
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

OpenStep Development Tools

A Sun Microsystems, Inc. Business

Please
Recycle

 1996 Sun Microsystems, Inc.

2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

Portions Copyright 1995 NeXT Computer, Inc. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party font
software, including font technology in this product, is protected by copyright and licensed from Sun's suppliers. This product
incorporates technology licensed from Object Design, Inc.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-
19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, and OpenWindows are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United
States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of
Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. Object Design is a trademark and the Object
Design logo is a registered trademark of Object Design, Inc. OpenStep, NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP logo,
Application Kit, Foundation Kit, Project Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. Unicode is a
trademark of Unicode, Inc. VT100 is a trademark of Digital Equipment Corporation. All other product names mentioned herein
are the trademarks of their respective owners.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC-11, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

X Window System is a product of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Introduction . 1-1

Putting Together an OpenStep Application 1-2

Designing Your Application . 1-2

Creating a Project . 1-2

Writing Code for Your Application . 1-3

Connecting Objects with Interface Builder. 1-3

Adding Other Resource Files . 1-4

Choosing Document Extensions for Your Application 1-4

Compiling Your Program . 1-4

Debugging Your Program. 1-5

Adding Help to Your Application . 1-5

Translate Your User Interface . 1-5

Making Your Application Available to Users. 1-6

2. Using Project Builder . 2-1

Creating and Maintaining Projects in Project Builder 2-3

iv OpenStep Development Tools—September 1996

Creating a New Project . 2-3

Opening an Existing Project . 2-5

Opening and Converting Older Project Types 2-6

Creating a New Subproject . 2-7

Setting Project Attributes . 2-8

Application Attributes. 2-9

Subproject Attributes . 2-11

Bundle Attributes . 2-11

Tool Attributes . 2-12

Palette Attributes . 2-13

Library Attributes . 2-14

Managing Project Files . 2-14

Adding Files to a Project . 2-17

File Display Shortcuts . 2-17

Building the Project . 2-18

Build Targets . 2-23

The Preamble and Postamble Files 2-24

Defining User-configurable Macros for a Project
with IDL Interfaces . 2-27

Setting Preferences. 2-29

Build Defaults Controls . 2-29

Tools Controls . 2-29

Sounds Controls . 2-31

Build Service Controls . 2-31

Contents v

Save Options Controls . 2-31

Running and Debugging an Application 2-32

Running. 2-32

Debugging . 2-32

Project Builder Command Reference. 2-33

Commands in the Project Menu. 2-33

Commands in the Files Menu . 2-34

3. Working with Interface Builder . 3-1

An Orientation . 3-3

Building an Application with Interface Builder. 3-4

Specifying Object Attributes. 3-4

Interconnecting Objects. 3-5

Adding Code to Your Application. 3-5

Composing the Interface . 3-6

Opening a Nib File. 3-6

 When Interface Builder Starts . 3-8

The Palette Window. 3-9

The Interface Window . 3-9

The Nib File Window. 3-10

The Inspector Panel . 3-21

Creating a Nib File. 3-22

Saving the Nib File . 3-23

What Is in a Nib File . 3-24

Archived Objects . 3-24

vi OpenStep Development Tools—September 1996

Sounds and Images . 3-25

Class References . 3-25

Connection Information . 3-26

When You Load a Nib File . 3-27

Using the Palettes . 3-27

The Menus Palette . 3-28

The Views Palette . 3-28

The TextViews Palette . 3-30

The Windows Palette . 3-30

Adding an Object from a Palette to Your Interface . . 3-31

Placing Interface Objects. 3-33

Selecting Multiple Objects . 3-34

Where Palette Objects Go . 3-34

Sizing Windows and Panels . 3-36

Initializing Text . 3-38

Sizing Interface Objects . 3-39

Positioning and Sizing Precisely . 3-40

Duplicating Objects . 3-42

Moving Objects to Other Windows . 3-43

Copying Objects to Other Interfaces 3-44

Arranging Objects . 3-45

Using the Alignment Panel . 3-45

Making Columns and Rows of Objects 3-48

Removing Objects . 3-49

Contents vii

The Coordinate System in Interface Builder. 3-49

OpenStep's Basic UI Design Philosophy. 3-51

Make It Consistent . 3-51

Make it Feel Natural . 3-51

Put the User in Charge. 3-51

Focus on the Mouse . 3-52

Making Interface Objects the Same Size 3-52

Shrinking Objects to their Minimum Size. 3-54

Grouping Objects . 3-55

Layering Objects . 3-57

Creating Matrices of Objects. 3-58

Creating Menus . 3-60

Deleting a Menu Cell . 3-61

Changing Titles of Menu Cells 3-61

Resequencing Menu Cells and Assigning
Command Key Equivalents . 3-61

Custom Menus . 3-62

Setting Object Attributes . 3-63

Examining an Object’s Attributes . 3-65

Customizing Windows and Panels . 3-67

Window Backing . 3-68

Changing Class and Custom Windows 3-69

Window Controls . 3-69

Window Options . 3-70

viii OpenStep Development Tools—September 1996

What is the Difference Between a Window and a Panel? . . 3-70

Setting Button Attributes . 3-71

The Anatomy of a Button . 3-72

Titles and Icons . 3-73

Key Equivalent . 3-73

Button Type. 3-74

Button Options . 3-74

Associating Sounds and Images with Buttons 3-75

Managing Sounds and Images . 3-78

Customizing Titles, Text Fields, and Scroll Views 3-81

Setting Textual Attributes . 3-84

Setting Box (Group) Attributes . 3-85

Customizing Browsers . 3-87

Setting Attributes of Menu Cells and Pop-up Buttons 3-89

Pop-Up Lists and Pull-Down Lists. 3-90

Compound Objects . 3-91

NSControl and NSActionCell . 3-91

Matrices . 3-92

Special Compound Objects . 3-93

Setting Matrix Attributes . 3-95

Matrix Selection Mode. 3-95

Cell Prototype . 3-96

Automatically Resizing Objects . 3-98

When There Are Conflicts . 3-101

Contents ix

Some Effects of Automatic Resizing 3-102

Automatic Resizing: An Example . 3-104

Using Tags . 3-107

Making and Managing Connections . 3-109

Communicating With Other Objects: Outlets and Actions. 3-109

Outlets . 3-109

Delegates . 3-110

Targets . 3-111

Actions. 3-111

Connecting Objects . 3-113

Outlet Connections . 3-114

Action Connections . 3-116

Connections Within the Interface. 3-118

Making Connections in Outline Mode 3-120

Examining Connections . 3-122

Identifying Objects in Outline Mode 3-127

Enabling Inter-Field Tabbing . 3-128

Disconnecting Objects . 3-130

Attaching Help to Objects. 3-132

Reviewing Help Attachments . 3-135

Testing the Interface. 3-136

Creating a Class . 3-137

Naming a New Class . 3-141

A Perspective on Class Hierarchy . 3-142

x OpenStep Development Tools—September 1996

Specifying Outlets and Actions . 3-143

Adding Outlets . 3-144

Adding Actions . 3-145

Creating an Instance of Your Class . 3-147

Connecting Your Class’s Outlets . 3-149

Connecting Your Class’s Actions . 3-151

Generating Source Code Files . 3-153

Implementing a Subclass of NSObject 3-155

Making Your Class a Delegate . 3-156

Implementing an NSView Subclass . 3-158

Adding Existing Classes to Your Nib File. 3-162

Updating a Class Definition . 3-163

Adding IDL Template Objects to Your Interface 3-164

Connecting IDL Template Objects 3-165

Outlet Autotyping . 3-166

Setting Preferences. 3-167

General Preferences . 3-167

Palettes Preferences . 3-168

Adding Custom Palettes, Inspectors, and Editors 3-169

Interface Builder Command Reference . 3-171

Commands in the Document Menu 3-171

Commands in the New Module Submenu 3-172

Commands in the Edit Menu . 3-173

Commands in the Format Menu . 3-173

Contents xi

Commands in the Group Submenu 3-175

Commands in the Align Submenu. 3-175

Commands in the Size Submenu . 3-177

Commands in the Tools Menu . 3-177

Commands on the Palettes Submenu 3-178

4. Using Edit in Developer Mode. 4-1

Starting Edit . 4-1

Setting Preferences. 4-3

User Options. 4-4

Start-up Options . 4-4

New Document Format Options 4-5

Default Font for RTF Files . 4-5

Default Font for ASCII Files . 4-5

Global Options . 4-6

Save Options . 4-6

Default Window Size Options 4-7

Emacs Key Bindings. 4-7

Temporary Settings . 4-7

Line Wrap Options . 4-8

Rich Text Display Options. 4-8

Text Options . 4-8

Automatic Indenting Options. 4-9

Structure Level of Blank Lines 4-9

Alignment Options . 4-9

xii OpenStep Development Tools—September 1996

Open at Structure Level Options 4-10

Editing Modes . 4-10

C Options . 4-11

Structure for Top Level . 4-11

Structure Level of Blank Lines 4-11

Tags Path . 4-12

Include Path . 4-12

Performing Basic Operations . 4-13

Opening Edit Files . 4-13

Using File Windows and Folder Windows 4-14

Contracting and Expanding Text in a File Window. 4-15

Adding Help Links . 4-17

Using Templates. 4-18

Using Keyboard Editing Commands. 4-21

Interacting with UNIX. 4-21

Piping UNIX Output to a File . 4-22

Using a Tags File . 4-23

Edit Command Reference . 4-24

Commands in the Main Menu . 4-24

Commands in the File Menu . 4-25

Commands in the Edit Menu . 4-26

Commands in the Link Submenu. 4-26

Commands in the Find Submenu. 4-27

Commands in the Format Menu . 4-28

Contents xiii

Commands in the Font Submenu. 4-28

Commands in the Text Submenu 4-29

Commands in the Help Submenu 4-30

Commands in the Sructure Submenu 4-31

Commands in the Utilities Menu. 4-31

Commands in the Expert Submenu 4-34

5. Using Icon Builder to Create Application Icons 5-1

Creating, Opening, and Saving Documents 5-1

Creating a New Document . 5-2

Opening an Existing Document . 5-3

Saving a Document . 5-3

Editing Icon Documents . 5-3

Using Icon Builder Tools. 5-4

The Brush Tool . 5-5

The Line Tool . 5-5

The PaintBucket Tool . 5-6

The Pencil Tool . 5-6

The Rectangle Tool . 5-6

The Selection Tool . 5-7

The Text Tool. 5-7

Using the Tools Inspector . 5-8

The Brush Inspector . 5-8

The Line Inspector . 5-9

The Oval Inspector . 5-9

xiv OpenStep Development Tools—September 1996

The Pencil Inspector. 5-10

The Rectangle Inspector . 5-11

The Selection Inspector . 5-12

The TextTool Inspector. 5-14

Zooming In on a Document . 5-15

Changing the Attributes of a Document 5-17

Working with Multiple-Icon Documents 5-17

Icon Builder Command Reference . 5-18

Commands in the Main Menu . 5-18

Commands in the Document Menu 5-18

Commands in the Format Menu . 5-19

Commands in the Tools Menu . 5-20

6. Navigating the OpenStep API with Header Viewer 6-1

Header Viewer and Header Files . 6-2

Precompiled Headers . 6-2

Language Elements . 6-3

Header Viewer and OpenStep Documentation 6-4

Using Header Viewer . 6-5

The Browser View . 6-5

The Finder View. 6-10

Adding Header Files . 6-12

The Find Panel . 6-13

Header Viewer and the File Viewer. 6-13

Header Viewer and Edit . 6-13

Contents xv

Setting Preferences. 6-14

Header Files Preferences. 6-14

Documentation Preferences . 6-15

Other Options Preferences . 6-15

Header Viewer Command Reference . 6-16

Commands in the Find Menu. 6-16

Commands in the Utilities Menu. 6-18

7. The NSObject Class. 7-1

Class Description . 7-1

Initializing an Object to Its Class . 7-2

Instance and Class Methods . 7-2

Initializing the Class . 7-3

Creating and Destroying Instances . 7-4

Identifying Classes . 7-5

Testing Class Functionality. 7-5

Testing Protocol Conformance . 7-6

Obtaining Method Information . 7-6

Describing Objects . 7-7

Posing . 7-7

Error Handling. 7-7

Sending Deferred Messages . 7-8

Forwarding Messages . 7-8

Archiving . 7-9

xvi OpenStep Development Tools—September 1996

8. The Objective C Language . 8-1

Objects . 8-2

The id Data Type. 8-3

Dynamic Typing. 8-4

Messages . 8-5

Polymorphism . 8-6

Dynamic Binding . 8-7

Classes . 8-8

Inheritance . 8-9

The NSObject Class . 8-10

Inheriting Instance Variables . 8-11

Inheriting Methods . 8-11

Overriding One Method with Another 8-11

Abstract Classes . 8-12

Class Types . 8-13

Static Typing . 8-13

Type Introspection . 8-14

Class Objects. 8-14

Creating Instances . 8-16

Customization with Class Objects 8-16

Variables and Class Objects. 8-18

Initializing a Class Object . 8-19

Methods of the Root Class . 8-19

Class Names in Source Code . 8-20

Contents xvii

Defining a Class . 8-21

The Interface. 8-21

Importing the Interface . 8-23

Referring to Other Classes . 8-24

The Role of the Interface . 8-24

The Implementation . 8-25

Referring to Instance Variables. 8-26

The Scope of Instance Variables 8-28

How Messaging Works . 8-31

Selectors . 8-34

Methods and Selectors. 8-35

Method Return and Argument Types 8-35

Varying the Message at Run Time 8-36

The Target-Action Paradigm. 8-36

Avoiding Messaging Errors . 8-37

Hidden Arguments . 8-38

Messages to self and super . 8-39

An Example. 8-40

Using super . 8-42

Redefining self . 8-43

9. The Objective C Extensions . 9¬1

Categories . 9¬1

Adding to a Class. 9¬2

How Categories are Used . 9¬3

xviii OpenStep Development Tools—September 1996

Categories of the Root Class . 9¬4

Protocols . 9¬5

How Protocols are Used . 9¬5

Methods for Others to Implement 9¬6

Anonymous Objects. 9¬7

Nonhierarchical Similarities . 9¬9

Informal Protocols . 9¬9

Formal Protocols . 9¬10

Protocol Objects . 9¬12

Conforming to a Protocol . 9¬12

Type Checking . 9¬13

Protocols within Protocols . 9¬14

Remote Messaging . 9¬15

Distributed Objects . 9¬16

Language Support . 9¬18

Synchronous and Asynchronous Messages 9¬18

Pointer Arguments. 9¬19

Proxies and Copies. 9¬21

Static Options . 9¬22

Static Typing . 9¬23

Type Checking . 9¬24

Return and Argument Types . 9¬25

Static Typing to an Inherited Class 9¬25

Getting a Method Address . 9¬27

Contents xix

Getting an Object Data Structure . 9¬28

Type *Encoding . 9¬29

A. Debugging an OpenStep Application. A-1

Debugger Objective C Support . A-1

Dynamic Types. A-2

Finding Methods and Using Method Names in
Non-expression Commands. A-2

Setting Breakpoints . A-2

Calling Objective C Methods . A-3

Recovering from a Run-time System Crash. A-3

Sample .dbxrc File. A-3

Helpful User Default Variables to Set with dwrite A-13

Tracing Objective C Objects . A-13

 Invoking messageSendDebug Using
dwrite Commands . A-14

Adding Individual Message Filters A-14

Controlling Call Level Indentation A-15

 Invoking messageSendDebug from a Program or
the Debugger . A-15

Enabling messageSendDebug A-15

Adding Filters. A-16

Controlling Call Level Indentation A-17

Removing Filters . A-17

Disabling Filters . A-17

Setting a Breakpoint on a Filter Match A-17

xx OpenStep Development Tools—September 1996

 Examples . A-18

Example 1: . A-18

Example 2: . A-18

Example 3: . A-19

Implementing Your Own Filtering Mechanism A-19

Debugging Applications Using Optimized Libraries A-20

B. Interface Builder Application Programming Interface B-1

Interface Builder’s Design . B-2

The Object Hierarchy. B-3

Class References . B-3

Connection Information . B-4

Interface Builder’s Programming Interface B-5

Classes . B-5

Protocols . B-6

Other Programming Interfaces. B-6

C. Interface Builder API Classes . C-1

IBInspector . C-1

Class Description . C-1

Instance Variables . C-2

Method Types. C-3

Instance Methods . C-3

object . C-3

ok: . C-3

okButton: . C-4

Contents xxi

revert: . C-4

revertButton: . C-5

textDidBeginEditing: . C-5

touch : . C-5

wantsButtons . C-5

window . C-5

IBPalette . C-6

Class Description . C-6

Instance Variables . C-7

Method Types. C-8

Instance Methods . C-8

associateObject:ofType:withView: C-8

imageNamed: . C-8

finishInstantiate . C-9

originalWindow . C-9

paletteDocument . C-9

NSApplication Additions . C-9

Category Description . C-9

Instance Methods . C-10

connectDestination . C-10

connectSource . C-10

displayConnectionBetween:and: C-10

isConnecting . C-10

stopConnecting . C-11

xxii OpenStep Development Tools—September 1996

NSObject Additions . C-11

Category Description . C-11

Instance Methods . C-12

awakeFromDocument : . C-12

canSubstituteFor Class: C-12

connectInspectorClassName C-12

editorClassName . C-12

helpInspectorClassName . C-13

imageForViewer: . C-13

inspectorClassName . C-13

sizeInspectorClassName . C-13

NSCellAdditions . C-14

Category Description . C-14

Instance Methods . C-14

cellWillAltDragWithSize: C-14

maximumSizeForCellSize: C-14

minimumSizeForCellSize: C-15

NSView Additions . C-15

Category Description . C-15

Instance Methods . C-16

allowsAltDragging: . C-16

maximumSizeFromKnobPosition: C-16

minimumSizeFromKnobPosition: C-16

placeView: . C-17

Contents xxiii

D. Interface Builder API Protocols . D-1

IB . D-1

Protocol Description . D-1

Method Types. D-2

Instance Methods . D-2

activeDocument . D-2

isTestingInterface . D-2

selectionOwner . D-2

IBConnectors . D-3

Protocol Description . D-3

Method Types. D-4

Instance Methods . D-4

destination . D-4

establishConnection . D-4

label . D-4

nibInstantiate . D-5

replaceObject:withObject: D-6

source . D-6

IBDocuments . D-6

Protocol Description . D-6

Method Types. D-7

Instance Methods . D-8

addConnector : . D-8

attachObject:toParent: . D-8

xxiv OpenStep Development Tools—September 1996

attachObjects:toParent: D-9

connectorsForDestination: D-9

connectorsForDestination:ofClass: D-9

connectorsForSource: . D-10

connectorsForSource:ofClass: D-10

containsObject: . D-10

containsObjectWithName:forParent D-11

copyObject:type:toPasteboard: D-11

copyObjects:type:toPasteboard: D-11

detachObject : . D-12

detachObjects: . D-12

documentPath . D-12

drawObject: . D-13

editor:didCloseForObject: D-13

editorForObject:create: D-13

nameForObject: . D-13

objects: . D-13

openEditorForObject: . D-14

parentOfObject : . D-14

pasteType:fromPasteboard:parent: D-14

removeConnector : . D-14

replaceObject:withObject: D-15

resignSelectionForEditor: D-15

setName:forObject: . D-15

Contents xxv

setSelectionFromEditor: D-15

touch . D-16

IBEditors . D-16

Protocol Description . D-16

Method Types. D-17

Instance Methods . D-18

acceptsTypeFromArray : . D-18

activate . D-18

close . D-19

closeSubeditors . D-19

copySelection . D-19

deleteSelection . D-20

document . D-20

editedObject . D-20

initWithObject:inDocument: D-20

makeSelectionVisible: . D-21

openSubeditorForObject : D-21

orderFront . D-21

pasteInSelection . D-21

resetObject: . D-22

selectObjects: . D-22

validateEditing . D-22

wantsSelection . D-22

window . D-22

xxvi OpenStep Development Tools—September 1996

IBSelectionOwners. D-23

Protocol Description . D-23

Instance Methods . D-23

drawSelection . D-23

selection: . D-23

selectionCount . D-24

E. Interface Builder API Types and Constants E-1

Symbolic Constants . E-1

Control Point Constants . E-1

Synopsis. E-1

Description . E-1

Global Variables . E-2

Notification Types . E-2

Synopsis. E-2

Description . E-2

Synopsis. E-3

Description . E-3

Pasteboard Types . E-3

Synopsis. E-3

Description . E-3

xxvii

Figures

Figure 2-1 New Project Panel . 2-4

Figure 2-2 Project Window . 2-5

Figure 2-3 Open Panel . 2-6

Figure 2-4 Project Conversion Attention Panel . 2-7

Figure 2-5 New Subproject Panel. 2-8

Figure 2-6 Attributes Display . 2-8

Figure 2-7 Project Name, Language, and Installation Directory 2-9

Figure 2-8 Information about the Main File . 2-9

Figure 2-9 Application Icon Well . 2-10

Figure 2-10 Document Icons and Extensions Well . 2-10

Figure 2-11 System File Types List. 2-11

Figure 2-12 Subproject Attribute Controls . 2-11

Figure 2-13 Standalone Bundle Attribute Controls . 2-12

Figure 2-14 Bundle Attribute Controls . 2-12

Figure 2-15 Standalone Tool Attribute Controls . 2-13

Figure 2-16 Tool Attribute Controls. 2-13

xxviii OpenStep Development Tools—September 1996

Figure 2-17 Palette Attribute Controls . 2-13

Figure 2-18 Library Attribute Controls . 2-14

Figure 2-19 Files Display in the Project Window. 2-15

Figure 2-20 Builder Display in Project Window . 2-18

Figure 2-21 Target Pop-up List. 2-19

Figure 2-22 Options Button. 2-19

Figure 2-23 Build Options Panel . 2-21

Figure 2-24 Build Button . 2-22

Figure 2-25 Warnings and Error Messages. 2-22

Figure 2-26 Build Defaults Controls . 2-29

Figure 2-27 Tools Controls . 2-30

Figure 2-28 Sounds Controls. 2-31

Figure 2-29 Build Service Controls . 2-31

Figure 2-30 Save Options Controls . 2-31

Figure 2-31 Run Button . 2-32

Figure 2-32 Debug Button . 2-32

Figure 3-1 Interface Builder and Your Application. 3-3

Figure 3-2 Opening a Nib File in the Project Builder Window 3-7

Figure 3-3 Opening a Nib File in the Open Panel . 3-8

Figure 3-4 The Palette Window . 3-9

Figure 3-5 An Interface Window . 3-10

Figure 3-6 The Nib File Window . 3-11

Figure 3-7 Icon Mode of Instances Display . 3-12

Figure 3-8 Outline Mode of Instances Display. 3-13

Figure 3-9 Classes Display . 3-14

Figures xxix

Figure 3-10 Images Display. 3-15

Figure 3-11 Sounds Display . 3-17

Figure 3-12 IDL Display . 3-18

Figure 3-13 File’s Owner Icon. 3-19

Figure 3-14 First Responder Icon . 3-20

Figure 3-15 The Inspector Panel . 3-21

Figure 3-16 New Info Panel. 3-23

Figure 3-17 Saving a Nib File . 3-24

Figure 3-18 Archived Objects . 3-25

Figure 3-19 Sounds and Images . 3-25

Figure 3-20 Custom Class Information . 3-26

Figure 3-21 Connection Information . 3-26

Figure 3-22 The Menus Palette . 3-28

Figure 3-23 The Views Palette . 3-29

Figure 3-24 The TextViews Palette. 3-30

Figure 3-25 The Windows Palette . 3-31

Figure 3-26 Dragging an Object from a Palette to the Application Interface 3-32

Figure 3-27 Placing an Interface Object . 3-33

Figure 3-28 Putting a Panel in the Workspace . 3-34

Figure 3-29 Putting NSViews and NSTextViews in aWindow 3-35

Figure 3-30 Putting a Menu Cell in the Application’s Menu 3-35

Figure 3-31 Sizing a Window with the Resize Bar. 3-36

Figure 3-32 Sizing a Window with the Size Display of the Inspector Panel 3-37

Figure 3-33 Editing the Text on an NSButton (Switch) Object. 3-38

Figure 3-34 Editing the Text on an NSMatrix Object 3-39

xxx OpenStep Development Tools—September 1996

Figure 3-35 Sizing an Interface Object with its Resize Handles 3-40

Figure 3-36 Sizing an Interface Object with the Inspector Panel 3-41

Figure 3-37 Selecting an Object to Duplicate . 3-42

Figure 3-38 The New Object After Duplication . 3-43

Figure 3-39 Moving an Object to Another Window 3-44

Figure 3-40 Using the Alignment Panel . 3-46

Figure 3-41 Using the Radio Buttons in the Alignment Panel 3-46

Figure 3-42 Aligning Objects Using the Grid . 3-47

Figure 3-43 Aligning Objects to the Grid . 3-47

Figure 3-44 Making a Column of Objects . 3-48

Figure 3-45 Deleting a Object from the Interface . 3-49

Figure 3-46 Interface Builder’s Coordinate System. 3-50

Figure 3-47 Selecting Several Objects and a Reference Object. 3-53

Figure 3-48 The Objects Become the Same Size as the Reference Object . . 3-54

Figure 3-49 Sizing an NSView Object to Fit the Text It Contains 3-55

Figure 3-50 Selecting Objects and Using the Group Command 3-56

Figure 3-51 Using an NSBox Object to Group Objects 3-56

Figure 3-52 Layering Buttons in Front of an NSScrollView Object. 3-58

Figure 3-53 Creating a Matrix of Radio Buttons . 3-59

Figure 3-54 Adding a Menu Cell to the Application’s Main Menu 3-60

Figure 3-55 Resequencing Menu Cells . 3-61

Figure 3-56 Assigning a Command Key Equivalent 3-62

Figure 3-57 Using the Submenu Cell to Create a Custom Submenu 3-62

Figure 3-58 Attributes Display of NSButton Inspector 3-64

Figure 3-59 Selecting an Object in the Instances Display 3-66

Figures xxxi

Figure 3-60 Attributes Display for a Custom Class. 3-67

Figure 3-61 Attributes Display for Windows and Panels. 3-68

Figure 3-62 Window Controls . 3-69

Figure 3-63 NSButton Attributes Display . 3-72

Figure 3-64 Associating an Image with a Button . 3-75

Figure 3-65 Associating a Sound with a Button. 3-76

Figure 3-66 NSButton Attributes that Relate to Sounds or Images. 3-77

Figure 3-67 Adding a Sound or Image to a Nib File 3-79

Figure 3-68 Inspecting Sound Attributes . 3-80

Figure 3-69 Inspecting Image Attributes. 3-81

Figure 3-70 Setting NSTextField Attributes . 3-82

Figure 3-71 Setting NSScrollView Attributes . 3-83

Figure 3-72 Setting the Attributes of Text . 3-84

Figure 3-73 Font Panel . 3-85

Figure 3-74 Setting NSBox Attributes . 3-86

Figure 3-75 Setting NSBrowser Attributes . 3-88

Figure 3-76 Setting NSPopUpButton Attributes. 3-90

Figure 3-77 Pop-up List’s Trigger Button and Menu Cells 3-91

Figure 3-78 NSScrollView . 3-93

Figure 3-79 NSBrowser . 3-94

Figure 3-80 NSPopUpButton . 3-94

Figure 3-81 Setting NSMatrix Attributes. 3-95

Figure 3-82 Cell Prototype Inspector . 3-97

Figure 3-83 Size Inspector . 3-99

Figure 3-84 Effects of Lines Inside and Outside the Autosizing Box 3-100

xxxii OpenStep Development Tools—September 1996

Figure 3-85 Specifying a Minimum Size for a Window 3-101

Figure 3-86 Resizing Example . 3-102

Figure 3-87 Object A Resizes, Object B Does Not . 3-103

Figure 3-88 Both Object A and Object B Resize . 3-103

Figure 3-89 Original and Resized Windows. 3-104

Figure 3-90 Minimum Size Set for Window . 3-105

Figure 3-91 Autosizing Behavior Set for Box . 3-105

Figure 3-92 Autosizing Behavior Set for Button . 3-106

Figure 3-93 Autosizing Behavior Set for Custom View 3-106

Figure 3-94 Specifying a Tag Integer for an Object . 3-108

Figure 3-95 Outlet. 3-110

Figure 3-96 Action . 3-112

Figure 3-97 Connecting Two Objects. 3-114

Figure 3-98 Inspecting an Outlet Connection. 3-115

Figure 3-99 Connecting Objects in the Instances Display. 3-116

Figure 3-100 Making an Action Connection. 3-117

Figure 3-101 Inspecting an Action Connection . 3-118

Figure 3-102 Connecting Objects within an Interface 3-119

Figure 3-103 Connecting an Object in the Outline with an Object
in the Interface . 3-120

Figure 3-104 Displaying the Possible Connections . 3-121

Figure 3-105 Making a Connection within the Nib FileWindow 3-122

Figure 3-106 Displaying the Outlets and Actions Associated with
an Interface Object . 3-123

Figure 3-107 Examining a Connection through the Inspector Panel
Connections Display . 3-124

Figures xxxiii

Figure 3-108 Checking Connections in the Instances Display 3-125

Figure 3-109 Looking at Connections Out in the Instances Display 3-126

Figure 3-110 Looking at Connections In in the Instances Display 3-126

Figure 3-111 Displaying an Image Representing the Object Selected
in the Outline . 3-127

Figure 3-112 Locating the Object in the Interface with an Arrow 3-128

Figure 3-113 Connecting Two NSForm Objects. 3-129

Figure 3-114 Making the Connection in the Inspector Panel 3-130

Figure 3-115 Disconnecting Objects Using the Inspector Panel 3-131

Figure 3-116 Disconnecting Object in the Instances Display 3-132

Figure 3-117 Help Builder Panel . 3-133

Figure 3-118 Help Display. 3-135

Figure 3-119 Exiting Test Mode . 3-137

 Class or NSView
Root Class or NSView . 3-139

Figure 3-121 Flowchart for Integrating an Existing Class into an
Application . 3-140

Figure 3-122 Selecting and Subclassing a Superclass 3-141

Figure 3-123 Naming the New Class . 3-142

Figure 3-124 Classes Display . 3-143

Figure 3-125 Accessing the Outlets of a Class . 3-144

Figure 3-126 Naming a New Outlet. 3-145

Figure 3-127 Accessing the Actions of a Class . 3-146

Figure 3-128 Naming a New Action . 3-146

Figure 3-129 Instantiating a Custom Class . 3-148

Figure 3-130 The New Instance in the Instances Display 3-149

xxxiv OpenStep Development Tools—September 1996

Figure 3-131 Connecting an Outlet . 3-150

Figure 3-132 Specifying the Outlet Identifier . 3-151

Figure 3-133 Connecting an NSControl Object . 3-152

Figure 3-134 Selecting the Action Method . 3-153

Figure 3-135 Unparsing the Nib File . 3-154

Figure 3-136 Unparse Attention Panel . 3-155

Figure 3-137 Making Your Class a Delegate. 3-157

Figure 3-138 An NSView Custom Class . 3-159

Figure 3-139 Making an Instance of an NSView Subclass 3-160

Figure 3-140 Assigning a Class Name to your NSView Object 3-161

Figure 3-141 Dragging a Header File into Your Nib File 3-162

Figure 3-142 Updating the Nib File . 3-163

Figure 3-143 Selecting the Class Definition to Update 3-164

Figure 3-144 Parse IDL Button (IDL Display) . 3-165

Figure 3-145 Make Template Object Button (IDL Display) 3-165

Figure 3-146 Interface Builder’s General Preferences Panel. 3-168

Figure 3-147 Interface Builder’s Palettes Preferences Panel. 3-169

Figure 4-1 Edit Preferences Panel. 4-3

Figure 4-2 Options Pop-up List . 4-4

Figure 4-3 Edit Start-up Options . 4-4

Figure 4-4 New Document Format Options. 4-5

Figure 4-5 RTF Default Font . 4-5

Figure 4-6 ASCII Default Font . 4-6

Figure 4-7 Save Options. 4-6

Figure 4-8 Default Window Size Options . 4-7

Figures xxxv

Figure 4-9 Emacs Key Bindings Options. 4-7

Figure 4-10 Line Wrap Options . 4-8

Figure 4-11 Rich Text Display Options . 4-8

Figure 4-12 Automatic Indenting Options . 4-9

Figure 4-13 Structure Level of Blank Lines in Text Options 4-9

Figure 4-14 Alignment Options . 4-10

Figure 4-15 Open at Structure Level Options. 4-10

Figure 4-16 Editing Modes File Extensions . 4-10

Figure 4-17 Structure for Top Level Options . 4-11

Figure 4-18 Structure of Blank Lines in C Code Options 4-11

Figure 4-19 Tags Path. 4-12

Figure 4-20 Include Path . 4-13

Figure 4-21 File Window with Only First-Level Text Expanded 4-15

Figure 4-22 File Window with Some Second-Level Text Expanded. 4-16

Figure 4-23 File Window with Some Third-Level Text Expanded 4-17

Figure 4-24 Expansion Dictionary Panel. 4-19

Figure 4-25 Add Button . 4-20

Figure 4-26 Remove Button. 4-20

Figure 5-1 New Document Panel . 5-2

Figure 5-2 Tools Panel . 5-4

Figure 5-3 The Brush Tool . 5-5

Figure 5-4 The Line Tool . 5-5

Figure 5-5 The Oval Tool. 5-5

Figure 5-6 The PaintBucket Tool . 5-6

Figure 5-7 The Pencil Tool. 5-6

xxxvi OpenStep Development Tools—September 1996

Figure 5-8 The Rectangle Tool . 5-6

Figure 5-9 The Selection Tool . 5-7

Figure 5-10 The Text Tool . 5-7

Figure 5-11 The Brush Inspector . 5-8

Figure 5-12 The Line Inspector . 5-9

Figure 5-13 The Oval Inspector . 5-10

Figure 5-14 The Pencil Inspector . 5-11

Figure 5-15 The Rectangle Inspector . 5-12

Figure 5-16 The Selection Inspector . 5-13

Figure 5-17 Flip Filter Attributes . 5-13

Figure 5-18 Rotate Filter Attributes . 5-14

Figure 5-19 Revert and Apply Buttons . 5-14

Figure 5-20 The TextTool Inspector . 5-15

Figure 5-21 The ObeseBits Panel . 5-16

Figure 6-1 Header Viewer’s Browser View . 6-6

Figure 6-2 Removing a Header File . 6-7

Figure 6-3 Selecting Direct Headers or All Headers in a Header
Hierarchy . 6-8

Figure 6-4 Choosing Display in a Class Hierarchy 6-9

Figure 6-5 Header Viewer’s Finder View . 6-10

Figure 6-6 Find Results List . 6-11

Figure 6-7 Selecting Find Control Options . 6-12

Figure 6-8 Header Viewer’s Find in Viewer Panel 6-13

Figure 6-9 Header Viewer Preferences Panel . 6-14

Figure 6-10 Documentation Directories Panel . 6-15

Figure 6-11 Other Options Panel . 6-16

Figures xxxvii

Figure 8-1 Some NSMatrix Objects . 8-2

Figure 8-2 Some Application Kit Classes . 8-9

Figure 8-3 Inheritance Hierarchy for Cells . 8-17

Figure 8-4 The Scope of Instance Variables . 8-29

Figure 8-5 Messaging Framework . 8-33

Figure 8-6 High, Mid, and Low . 8-41

Figure 9-1 Remote Messages. 9¬17

Figure 9-2 Round-Trip Message. 9¬19

xxxviii OpenStep Development Tools—September 1996

xxxix

Tables

Table 2-1 Standard Types of Projects. 2-2

Table 2-2 Project Builder Modes. 2-5

Table 2-3 Categories of Project Files . 2-16

Table 2-4 Build Options . 2-20

Table 2-5 Build Targets . 2-23

Table 2-6 Additional Build Targets . 2-26

Table 2-7 Project Menu Commands . 2-33

Table 2-8 File Menu Commands. 2-34

Table 3-1 Object Attributes and Messages . 3-65

Table 3-2 Window Options . 3-70

Table 3-3 Button Types . 3-74

Table 3-4 Button Options. 3-74

Table 3-5 Title, Text Field, and Scroller Options . 3-83

Table 3-6 Browser Options . 3-88

Table 3-7 Cells Options . 3-98

Table 3-8 Flow Chart Legend . 3-138

xl OpenStep Development Tools—September 1996

Table 3-9 Document Menu Commands. 3-171

Table 3-10 New-Module Menu Commands . 3-172

Table 3-11 Edit Menu Commands . 3-173

Table 3-12 Format Menu Commands . 3-174

Table 3-13 Group Submenu Commands . 3-175

Table 3-14 Align Submenu Commands. 3-176

Table 3-15 Size Submenu Commands . 3-177

Table 3-16 Tools Menu Commands . 3-178

Table 3-17 Palettes Menu Commands . 3-178

Table 4-1 Edit Command-line Options . 4-2

Table 4-2 Keyboard Editing Commands . 4-21

Table 4-3 Arguments for UNIX Commands. 4-23

Table 4-4 File Menu Commands. 4-25

Table 4-5 Edit Menu Commands . 4-26

Table 4-6 Link Submenu Commands . 4-26

Table 4-7 Find Submenu Commands . 4-27

Table 4-8 Format Menu Commands . 4-28

Table 4-9 Text Submenu Commands. 4-29

Table 4-10 Help Submenu Commands . 4-30

Table 4-11 Structure Submenu Commands . 4-31

Table 4-12 Utilities Menu Commands . 4-32

Table 4-13 Expert Menu Commands . 4-34

Table 5-1 Icon Builder Submenus. 5-18

Table 5-2 Icon Builder’s Document Submenu . 5-19

Table 5-3 Icon Builder’s Format Menu . 5-19

Tables xli

Table 5-4 Icon Builder’s Tools Menu . 5-20

Table 6-1 Language Elements You Can Look at with Header Viewer . . 6-3

Table 6-2 Find Menu Commands. 6-17

Table 6-3 Utilities Menu Commands . 6-18

Table 8-1 Scope Levels for Instance Variables . 8-29

Table 9-1 Type Codes . 9¬29

Table 9-2 Additional Encodings . 9¬31

xlii OpenStep Development Tools—September 1996

xliii

Preface

This manual, OpenStep Development Tools, describes the essential tools for
developing an application using WorkShop™ OpenStep™ —the Project
Builder, Interface Builder, Header Viewer, Icon Builder, and Edit applications.
The manual also includes chapters on the Objective C language and the
NSObject class.

Who Should Use This Book
If you are developing or designing OpenStep applications, this book will help
you understand how to use the WorkShop OpenStep development tools to
create a project and an application interface, and build and debug the project.

Before You Read This Book
This manual assumes you are familiar with the standard Solaris™ OpenStep™
user interface. Before attempting to develop an OpenStep application, you
should be familiar with the workspace, the dock, the File Viewer, the
applications supplied with Solaris OpenStep and the general look and feel of
the OpenStep desktop. If you have not used Solaris OpenStep, the following
end-user manuals will help you learn about it:

• Quick Start to Using the OpenStep Desktop

• Using the OpenStep Desktop

xliv OpenStep Development Tools—September 1996

If you are developing an OpenStep application with a graphical interface you
also need to be familiar with the guidelines covered in OpenStep User Interface
Guidelines.

How This Book Is Organized
This manual contains the following chapters and appendices:

Chapter 1, “Introduction,” provides an overview of the tools and techniques
that you’ll use to assemble a working application. The tools introduced in this
chapter are discussed in greater detail in other chapters of this manual

Chapter 2, “Using Project Builder,” describes the central control point for
application development in WorkShop OpenStep. Project Builder helps you
with each stage of application development, from inception to installation.

Chapter 3, “Working with Interface Builder,” describes the tool that lets you
assemble your application’s user interface (and other parts) from predefined
building blocks, and lets you create new building blocks of your own design.

Chapter 4, “Using Edit in Developer Mode,” describes the OpenStep text editor
you will be using to edit and debug your application’s source files. This
chapter emphasizes the developer mode options of Edit. The user mode of Edit
and the features available in both modes are described in Using the OpenStep
Desktop.

Chapter 5, “Using Icon Builder to Create Application Icons,” describes a
simple graphic editor for creating and editing application icons.

Chapter 6, “Navigating the OpenStep API with Header Viewer,” describes an
OpenStep application that you can use to browse classes, language elements,
and header files, and to perform searches on header files.

Chapter 7, “The NSObject Class,” briefly describes NSObject , the root class of
all ordinary Objective C inheritance hierarchies.

Chapter 8, “The Objective C Language,” describes the OpenStep Objective C
language as well as the principles of object-oriented programming as
implement in Objective C.

Chapter 9, “The Objective C Extensions,” describes more advanced and less
commonly used features of Objective C.

Preface xlv

Appendix A, “Debugging an OpenStep Application,” provides information on
using the SPARCworks Debugger and other tools to debug an OpenStep
application.

Appendix B, “Interface Builder Application Programming Interface,” describes
the application programming interface (API) that lets you build custom
palettes, inspectors, and editors for Interface Builder.

Appendix C, “Interface Builder API Classes,” describes the classes in the
Interface Builder API.

Appendix D, “Interface Builder API Protocols,” describes the protocols in the
Interface Builder API.

Appendix E, “Interface Builder API Types and Constants,” describes the types
and constants in the Interface Builder API.

Related Books
For information on OpenStep classes, refer to OpenStep Programming Reference.

xlvi OpenStep Development Tools—September 1996

What Typographic Changes Mean
Table P-1 describes the typographic changes used in this book.

Shell Prompts in Command Examples
Table P-2 shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Table P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

1-1

Introduction 1

There are a number of ways you might draw a distinction between programs
and applications. Programs are simple; applications are complicated. Programs
are small; applications are large. Programs run from a command line;
applications have graphical user interfaces. A program has just a few source
files; an application may have many.

No matter how you draw the line, as you move from writing programs to
developing applications, you need to focus increasing attention on project
management. If the application is the end result, the project is how you get
there. The project can be thought of as both the steps you go through and the
source files you use to construct an application.

A complete project management strategy includes strategies for creating,
organizing, and maintaining source files; building the application from its
sources; running and debugging the application; revising the source files to fix
bugs; and installing the finished application—or preparing it for others to
install.

In the WorkShop™ OpenStep™ development environment, the hub of
application development is Project Builder—a project manager that is itself an
OpenStep application. Project Builder is not the only tool you use to manage
your project and develop your application. Instead, it is like the control center
from which you switch from one application development task to another, and
from one tool to another.

1-2 OpenStep Development Tools—September 1996

1

Putting Together an OpenStep Application
This introduction takes a brief look at the components of an OpenStep
application. It explains the path that Project Builder and other WorkShop
OpenStep tools offer you for going from a set of source files to a working
application. It looks at the application development process in terms of
resources and tasks that you, the developer, must provide and those that
Project Builder and other OpenStep tools provide for you. Subsequent chapters
present detailed information for each of the tools introduced here.

The process of developing an application can be divided into three general
tasks: designing, coding, and debugging. These tasks are never performed
entirely sequentially. You may decide after some coding that you need to
change some aspect of design. Debugging always reveals code that needs
rewriting, and occasionally exposes design flaws. When you develop an
application with OpenStep tools, you can move easily among these tasks.

The following sections enumerate the components of the OpenStep application
development process, describing those portions for which you are responsible
and those which Project Builder, Interface Builder, and other WorkShop
OpenStep development tools handle for you. For more information on Project
Builder, see Chapter 2, “Using Project Builder”; for more on Interface Builder,
see Chapter 3, “Working with Interface Builder. “

Designing Your Application

Before you write any code, you should spend some time thinking about design.
Some components of application design to consider are functionality, program
structure, and user interface. You should think about the goals of your
application and the techniques you might use to meet those goals. You should
determine the unique classes that your application requires and think about
how to divide your program into separate modules. You should sketch out
user interface ideas, and use Interface Builder to prototype and test those
ideas.

Creating a Project

With the basic design determined, you can use Project Builder to start a new
project.

Introduction 1-3

1

In WorkShop OpenStep, a project is physically represented by a directory
under the control of Project Builder; all of the components of the project must
reside in this directory. When you start a new project, Project Builder
automatically generates the project directory and a set of source files common
to all applications, including a main file, a nib file, a makefile, and others.

The main file includes the standard main() function required in all C
programs. The nib file is used by Interface Builder to archive the application’s
user interface. The makefile is updated by Project Builder to keep track of all
the source files from which your application is built. Another file in the project
directory, PB.project , is used by Project Builder itself to keep track of
various project components.

Throughout the life of the project, you will add to and update the files in the
project directory. WorkShop OpenStep development tools, including Project
Builder and Interface Builder, may add to and maintain other files in this
directory as your project grows.

Writing Code for Your Application

To establish the unique workings of your application, you create class interface
and implementation files that include code for the appropriate methods and
instance variables. Interface Builder can help in this process by creating
skeletal code for a class if you list the methods in the Inspector panel. If you
create the source files first, Interface Builder can parse them to learn about their
id instance variables and action methods.

Project Builder lets you add source files to your project at any time. You can
create other source files using standard C, Objective C, and C++ code. Project
Builder can also know about and manage other files, such as pswrap files
containing PostScript™ code within C function wrappers.

Connecting Objects with Interface Builder

In Interface Builder, you can interconnect objects in your application. For
example, you can establish the target and action for a control in the interface.

Interface Builder puts information about the classes used by your application
in the nib file; included are Application Kit classes and other classes provided
by OpenStep, as well as the custom classes you define. The nib file contains all
the information required to generate the objects in your application at run

1-4 OpenStep Development Tools—September 1996

1

time: specifications for objects, connections between objects, icons, sounds, and
other features. An OpenStep application can have one or more nib files for
each application you create.

Adding Other Resource Files

Resource files are frequently used to customize the user interface for your
application. Project Builder allows you to add icons for both your application
and its documents. Interface Builder allows you to add icons and sounds for
the buttons in your user interface. You can put other images in your
application using Application Kit classes and PostScript code. You can add
other sounds using Sound Kit methods. Project Builder provides a drag-and-
drop interface for adding sounds, images, and other resource files to your
project, including unique icons for your application and its document files.

Choosing Document Extensions for Your Application

If your application reads and writes documents, you will need to take
measures to see to it that the Workspace Manager knows about and can work
with those files. First, you need to write file management code that saves the
documents with a unique extension. You also need to use the Project Builder
application’s Attributes display to specify document extensions for an
application. Project Builder adds these extensions to the appropriate file to
assure that your application is invoked by Workspace Manager when the user
double-clicks on a file with the specified extensions.

Compiling Your Program

As you add source files to your application, Project Builder lists them in the
project Makefile . When you use its Build command, Project Builder starts the
make utility, which in turn reads the project Makefile and generates the
executable file from the sources. As the make utility runs, it issues system
commands to compile and link your application’s source files into an
executable file. The project Makefile , generated by Project Builder, provides
the information the make utility needs to do this job. The warnings generated
by the compiler and link editor provide information to help you locate and fix
bugs detected at compile time.

Introduction 1-5

1

In building your project, the make utility keeps track of source updates. Each
time you run the make utility, only the source files that have been updated
since the last make are regenerated; the rest are used as is. This minimizes the
time required to generate your executable file.

Once you start building your application, Project Builder provides an
interactive interface to Edit for locating source code problems detected by the
compiler and link editor. Anytime the compiler encounters an error, Edit can
locate the code with a single click—you can then edit out the problem and
begin compiling again.

Debugging Your Program

After you successfully compile your program, you are ready to try running it.
The easiest way to do so is by choosing Debug in the Project Builder
application’s Builder display. This selection builds your application (if
necessary), then starts the distributed Debugger. The Debugger is described in
detail in the SPARCWorks manual Debugging a Program.

Adding Help to Your Application

Using Project Builder, Interface Builder, and Edit, you can create context-
sensitive help for your application. The standard help template provided by
Interface Builder includes general information on the OpenStep environment.
You can add to this template to include application-specific help, and you can
create links between the controls in your application and the help system to
provide the user with context-specific assistance.

Translate Your User Interface

When the application is complete and help is available, you can create
alternate versions with translated text for windows, panels, menu items, and
buttons, as well as any help information you have added. The OpenStep
application programming interface (API) provides ways of accessing bundles
in your application containing the text and user interface in various languages
you want to support. Chapter 2, “Using Project Builder,” provides information
on how to make a project localizable.

1-6 OpenStep Development Tools—September 1996

1

Making Your Application Available to Users

Once an application is debugged, you can install it in an application directory
using Project Builder. Project Builder lets you determine which directory to
install the application in and provides a way to automatically install the
application when you build it.

When the user double-clicks on a document file, the Workspace Manager has
to locate and start the executable file for that application. Workspace Manager
looks for the executable file in a systematic sequence of directory paths. This
search sequence is contained in an environmental variable path . You can place
an application in any of the directories specified in path .

Because of the search sequence specified by path , you can replace an
application located later in the sequence with one of the same name earlier in
the sequence. For example, $(HOME)/Apps occurs before
/usr/openstep/Apps in path ; if you place an application in the directory
$(HOME)/Apps with the same name as an application in the
/usr/openstep/Apps directory, the Workspace Manager finds and starts the
version in $(HOME)/Apps (the Apps subdirectory in your home directory).
You should consider the path when naming and installing applications.

2-1

Using Project Builder 2

Project Builder is the hub of application development in the WorkShop™
OpenStep™ development environment. It manages the components of your
application and gives you access to the other development tools you use to
create and modify these components. Project Builder is involved in all stages of
the development process, from providing you with the basic building blocks
for a new application to installing the application when it is finished.

Project Builder’s unit of organization is the project. A project can be defined in
two ways: conceptually and physically. Conceptually, a project comprises a
number of source components and is intended to produce a given end product,
such as an application. (Other types of end products are possible, as described
in Table 2-1 on page 2-2.) Physically, a project is a directory containing source
files and Project Builder’s controlling file, PB.project . This file records the
components of the project, the intended end product, and other information.
For a file to be part of a project, it must reside in the project directory and be
recorded in the project’s PB.project file. You do not edit PB.project
directly; your actions in the Project Builder application—adding source files,
modifying the project name or installation directory, and so on—have the effect
of updating this file.

2-2 OpenStep Development Tools—September 1996

2

Project Builder can be used to create and maintain the standard types of
OpenStep projects described in Table 2-1.

Project Builder also helps you prepare your application (or other type of
project) for various language markets, a process called “localization.” It does
this by helping you group language-dependent components of your
application—TIFF and nib files, for example—in subdirectories of the project.
These subdirectories are named for a language and have a .lproj extension
(for example, Spanish.lproj), and so are commonly called .lproj

Table 2-1 Standard Types of Projects

Type of Project Description

application A standalone OpenStep application, such as the
applications found in /usr/openstep/Apps.

subproject A project within a project. With larger applications, it is
often convenient to group components into subprojects,
which can be built independently from the main project. In
building a project, Project Builder builds the subprojects as
needed and then uses their end products—usually.o
files—to build the main project.

bundle A directory containing resources that can be used by one
or more applications. These resources might include such
things as images, sounds, character strings, nib files, or
executable code. For more information, see “NSBundle” in
OpenStep Programming Reference. A bundle can be a
standalone project, or contained within another project.

palette A loadable palette that can be added to Interface Builder’s
Palettes window. .

tool A tool is a command-line utility that has no resources, but
that can be run by a user or by an application. An example
is a server on another system with which an application
might want to interact.

library A directory containing executable code that can be used by
one or more applications. A library is a standalone project,
and is linked with other applications that use its
executable code.

Using Project Builder 2-3

2

directories. Through the facilities of the NSBundle class, your application can
load the appropriate, language-dependent components depending on the
user’s preferred language. (See “NSBundle” in OpenStep Programming Interface.)

You can start Project Builder (located in /usr/openstep/Developer/Apps)
from the workspace as you would any other application, by double-clicking its
icon in the workspace. When it starts, only the main menu is visible. Once
Project Builder is running, you can create a new project or open an existing
project as described below.

Creating and Maintaining Projects in Project Builder
This section describes how to create a new project in Project Builder and how
to convert a NEXTSTEP project to the Sun™ project format. You will also find
information here about maintaining your project.

Creating a New Project

To create a new project, choose the New command in the Project menu. A
panel is displayed (see Figure 2-1 on page 2-4) in which you specify a path
name and name for the project. Specify a new directory on the Name line, or
choose an existing directory in the browser (and leave the name PB.project
in the Name field) if you want to use that directory as the root of the new
project.

2-4 OpenStep Development Tools—September 1996

2

Figure 2-1 New Project Panel

By default, the new project is a standalone application. A pop-up list in the
panel lets you create a bundle, palette, tool, or library instead. No matter what
type of project you create, a project window for the new project is displayed
(see Figure 2-2 on page 2-5).

Using Project Builder 2-5

2

Figure 2-2 Project Window

You will use this project window to maintain, build, and debug the project, as
described in the rest of this chapter. Table 2-2 lists the four modes of operation
indicated by the four buttons in the upper right portion of the panel.

Opening an Existing Project

To open an existing project, choose the Open command in the Project menu. A
standard Open panel is displayed in which you specify the project to open (see
Figure 2-3 on page 2-6). Select the file named PB.project in the project
directory and click on Open to open the project.

 When you open a project, its project window is displayed in Project Manager.

Table 2-2 Project Builder Modes

Mode Purpose

Attributes Set attributes of your project

Files Add, remove, or open project files

Finder Search for text in project files

Builder Build the project

2-6 OpenStep Development Tools—September 1996

2

Figure 2-3 Open Panel

Opening and Converting Older Project Types

To open an existing NEXTSTEP project that has not been converted to the Sun
project format, choose the Open command in the Project menu. A standard
Open panel is displayed in which you specify the project to open. Select the file
named PB.project in the project directory and click on Open to open the
project.

A panel is displayed warning you that the project file is a NEXTSTEP style
project file that needs to be converted to a Sun style project file (see Figure 2-4
on page 2-7). Since the conversion process overwrites several project files, you
are asked if you want to back up those files first before converting the project.
Unless you are sure you do not need to do this, you should click on Backup
First (or Cancel if you decide not to continue)—this causes the PB.project
file and its associated makefiles to be saved in a directory named
savedNextFiles .

Using Project Builder 2-7

2

Figure 2-4 Project Conversion Attention Panel

Once the project is converted, its project window is displayed in Project
Manager. When you save the resulting project, it will be saved as a
PB.project file in the same directory. This is the file you will open in the
future when you work with the project. You might want to build your newly
converted project with the clean target, to make sure that it gets rebuilt from
scratch under Sun OpenStep.

The conversion process will convert the existing PB.project and associated
makefiles to the OpenStep format. If you have already modified
Makefile.preamble or Makefile.postamble , you will have to insert those
modifications into the new versions of these files by hand.

Creating a New Subproject

To create a new subproject, open the project in which you want to create it and
choose the NewSubproject command in the Project menu. A panel is displayed
in which you specify a name and type for the new subproject (see Figure 2-5 on
page 2-8). Specify a name for the subproject.

2-8 OpenStep Development Tools—September 1996

2

Figure 2-5 New Subproject Panel

A pop-up list in the panel lets you create a bundle or tool that is part of your
project instead. No matter what type of subproject you create, the new
subproject is displayed in the Subproject category in the project window.

Setting Project Attributes

To bring up the Attributes display shown in Figure 2-6, click on the Attributes
button in the project window.

Figure 2-6 Attributes Display

Using Project Builder 2-9

2

The contents of the Attributes display vary depending on the type of
project—application, bundle, palette, tool, or library. The contents of these five
types of Attributes display are shown in the subsections that follow.

Application Attributes

If the project is an application, the Attributes display contains the controls for
defining application attributes shown in Figure 2-7.

Figure 2-7 Project Name, Language, and Installation Directory

This group of controls includes fields for specifying the project name, the
primary language (that is, the language in which the project is being
developed), and the target directory.

The Main File Info, shown in Figure 2-8, has fields for specifying the
application class and the application’s main nib file, plus an option for
regenerating the Main file whenever you save the project. (Project Builder
maintains this file and you are not expected to change it; therefore you should
leave this option checked, unless there is a reason why you need to maintain
the Main file yourself.)

Figure 2-8 Information about the Main File

2-10 OpenStep Development Tools—September 1996

2

The Application Icon well, shown in Figure 2-9, displays the application icon.
The default application (shown in Figure 2-9) is used if you do not provide one
of your own choosing. To associate a new icon with the application, drag its
TIFF file from the workspace into the well. The file is copied to the project
directory, although it is not displayed in any of the categories shown in the
Files display.

Figure 2-9 Application Icon Well

The Document Icons and Extensions well, shown in Figure 2-10, is where you
indicate what types of documents your application is able to deal with. If you
are creating your own document type, create a document icon for it and drag
the TIFF file containing that icon into the well. Once the icon is in the well,
change its label to match the document extension.

Figure 2-10 Document Icons and Extensions Well

The System File Types list, shown in Figure 2-11 on page 2-11, lists OpenStep
file types (as identified by their standard OpenStep file extensions), any of
which you may choose to have your application handle by selecting the file
type in the scrolling list. When you select a file type by clicking on it, a check
mark is displayed next to its name, and it is added to the Document Icons and
Extensions well. Click on the file type again if you want to deselect it and
remove it from the well.

Using Project Builder 2-11

2

Figure 2-11 System File Types List

Subproject Attributes

If the project is a subproject, the Attributes display contains the controls shown
in Figure 2-12 for defining project attributes.

Figure 2-12 Subproject Attribute Controls

The Project Type pop-up list contains items that let you convert the subproject
to a bundle or a tool.

The text fields allow you to change the project name and primary language.

Bundle Attributes

If the project is a standalone bundle, the Attributes display contains the
controls shown in Figure 2-13 on page 2-12 for defining project attributes.

2-12 OpenStep Development Tools—September 1996

2

Figure 2-13 Standalone Bundle Attribute Controls

The text fields allow you to change the name, primary language, target
directory, and extension.

If the project is a bundle that is part of another project, the Attributes display
contains the controls shown in Figure 2-14 for defining project attributes.

Figure 2-14 Bundle Attribute Controls

The Project Type pop-up list contains items that let you convert the bundle to a
subproject or a tool. This is possible only with a bundle that is part of another
project, not with a standalone bundle.

The text fields allow you to change the project name, primary language, and
extension.

Tool Attributes

If the project is a standalone tool, the Attributes display contains the controls
shown in Figure 2-15 on page 2-13 for defining project attributes.

Using Project Builder 2-13

2

Figure 2-15 Standalone Tool Attribute Controls

The text fields allow you to change the name and target directory.

If the project is a tool that is part of another project, the Attributes display
contains the controls shown in Figure 2-16 for defining project attributes.

Figure 2-16 Tool Attribute Controls

The Project Type pop-up list contains items that let you convert the tool to a
bundle or a subproject. This is possible only with a tool that is part of another
project, not with a standalone tool.

The text field allows you to change the project name.

Palette Attributes

If the project is a palette, the Attributes display contains the controls shown in
Figure 2-17 for defining project attributes.

Figure 2-17 Palette Attribute Controls

The text fields allow you to change the project name and the primary language.

2-14 OpenStep Development Tools—September 1996

2

Library Attributes

If the project is a library, the Attributes display contains the controls shown in
Figure 2-18 for defining project attributes.

Figure 2-18 Library Attribute Controls

The text fields allow you to change the project name, primary language, and
target directory.

By default, Project Builder builds Solaris shared libraries for library projects. If
you want to build a traditional .a style library archive, you must create your
own Makefile.preamble containing the following macro override:

LIBRARY_STYLE = STATIC

See “Creating a Makefile.preamble” on page 2-27 for information on creating
your own Makefile.preamble .

Managing Project Files

The Files display of the project window is used to manage the files in the
project. You can use this display to add or delete project files, as well as open
them for viewing or editing.

To bring up the Files display, shown in Figure 2-19 on page 2-15, click on the
Files button in the project window.

Using Project Builder 2-15

2

Figure 2-19 Files Display in the Project Window

The Files display provides a file viewer similar to the Workspace Manager’s
File Viewer, with categories of project components displayed in the left-hand
column and project files for each category displayed to the right. These project
categories do not correspond to project subdirectories—the categories are
logical rather than physical groupings of files.

The project directory provides you and Project Builder with a convenient way
to organize the files used in putting together your application. As shown here,
files in the project directory are grouped by Project Builder into a number of
categories. These categories are represented with a suitcase icon (and are
frequently referred to as suitcases). These categories are described briefly in
Table 2-3 on page 2-16.

2-16 OpenStep Development Tools—September 1996

2

You can use Project Builder’s file viewer to do the following:

• Browse the project and the files it contains.

• Add files to the project (as described in “Adding Files to a Project” on
page 2-17).

• Remove files from the project by selecting the file in the browser and then
choosing Remove in the Files menu.

Table 2-3 Categories of Project Files

Category Description

Classes Files containing code for custom classes used by an application.

Headers Files containing declarations of methods and functions used by an
application.

Other Sources Files containing code (other than class code) for an application.
These may include.m files (containing Objective C code), .c files
(containing standard C code), .C or .cc files (containing C++
code), .psw files (containing PostScript™ code), and other sources.
Project Builder automatically adds the file
ApplicationName _main.m to Other Sources.

Interfaces Nib files for each application and for each new module added to an
application. The flag icon next to a file name in the Interfaces
suitcase indicates that the file is localizable (that is, the file is in the
Language .lproj subdirectory in the project directory, rather than
in the project directory itself).

Images Files containing images (other than icons) used by an application,
including TIFF or EPS files.

Other Resources Files (such as sound files) for other resources used by an
application.

Subprojects Directories containing subprojects used by an application.

Supporting Files Files not used directly by the application but that should be kept
with the application.

Libraries Libraries referenced by an application. OpenStep libraries are
referenced but not copied into the project directory. Other libraries,
such as those you create, may be added to the project directory.

Using Project Builder 2-17

2

• Open a project file by double-clicking on its name or icon (or, by selecting
the file in the browser and then choosing Open in Workspace in the Files
menu).

Adding Files to a Project

There are several ways to add an existing file to a project. The file can be
already located in the project directory, or it can be somewhere else. To add it,
use one of the following methods:

• Drag the file from the File Viewer into the project window. If you drag it to
the suitcase in which it belongs, that suitcase opens up. If you let it go, it is
added to that suitcase. If instead you drag it to the project suitcase, the
project suitcase opens up and the file is added to it. The Classes suitcase
takes .m files, the Headers takes .h files, and so on. Other Sources refers to
files that are not headers or classes, but need to be compiled and linked into
the target of the project (application, bundle or palette). Other Resources
refers to files that need to be copied into the target. Supporting Files refers
to files that are necessary to maintain the project, but do not become part of
the target.

• Select a suitcase and choose the Add command in the Files menu (or simply
double-click the suitcase). A panel is displayed in which you specify a file to
add to the selected suitcase.

• Use the service that Project Builder supplies to other applications. Relevant
applications have a command named Project in their Services menu. This
command displays a submenu containing two commands: Add To and
Build. Add To can be used to add the current file to the project (in this case,
the file must already be located in the project directory).

File Display Shortcuts

The following shortcuts are available in the File display:

• Control-dragging in a file list allows you to reorder the files. This can be
especially important in dealing with libraries, since the file order determines
the link order.

• Alt-double-clicking on the icon of a selected file selects that file in the
workspace File Viewer, instead of opening it.

2-18 OpenStep Development Tools—September 1996

2

• Command-double-clicking on a source file opens both the file and its
associated header file, if it exists.

Building the Project

When you instruct Project Builder to build the project, the project is compiled
by the make utility using the project’s makefile. The project’s source files are
compiled and linked into an executable file. The project makefile provides the
information the make utility needs to do this job. The warnings generated by
the compiler and link editor provide information to help you locate and fix
bugs detected at compile time.

Note – You can specify default build arguments, which apply for all projects,
with the Preferences command in the Info menu. See “Setting Preferences” on
page 2-29 for information on Project Builder’s Preferences panel.

To build the project, first bring up the Builder display, shown in Figure 2-20, by
clicking on the Builder button in the project window.

Figure 2-20 Builder Display in Project Window

Target pop-up list

Options button

Build button

Using Project Builder 2-19

2

The Target pop-up list, shown in Figure 2-21 on page 2-19, lets you specify a
build target for the project. The build targets on the pop-up list are described
in Table 2-5 on page 2-23.

You can add a custom target to the pop-up list using the Add option at the
botton of the list. When you add a custom target, it is displayed as an option in
the pop-up list for the current project only.

The default build target is "app" for application projects, "bundle" for bundle
projects, "palette" for palette projects, or "tool" for tool projects. You can choose
another target for this project.

Figure 2-21 Target Pop-up List

The Options button, shown in Figure 2-22, brings up the Build Options panel
(see Figure 2-23) in which you can specify the build options described in
Table 2-4.

Figure 2-22 Options Button

2-20 OpenStep Development Tools—September 1996

2

If you want to specify the build attributes using the Build Options panel, be
sure to do so before starting to build the project.

Table 2-4 Build Options

Option Description

Arguments Arguments to be passed on the command line to the
make utility that is run during the build.

Host The host on which the project will be built. The remote
host you choose must have network access to your
project directory. If you specify a host here, it overrides
any host specified in the Preferences panel.

Build after error Lets you override the Preferences setting of the option to
continue building projects even when a fatal error is
encountered during compiling.

Compiler Extra command line arguments to be passed to the
compiler

Linker Extra command line arguments to be passed to the linker

Library search order A list of directories in which the linker will search for
libraries

Header file search order A list of directories in which the compiler will search for
header files

Using Project Builder 2-21

2

Figure 2-23 Build Options Panel

Note – If you build the project on a remote host, be sure you know what
version of OpenStep the host is running.

When you are ready to build the project, click on the Build button (shown in
Figure 2-24 on page 2-22).

Type arguments to be passed to the make utility.

The project is built on the host you name here.

Check if you want the build to continue even when
a fatal error is encountered during compiling

Type extra arguments to be passed to the compiler.

Type extra arguments to be passed to the linker.

Click on a button to choose the search list: Library
for the linker, Header for the compiler.

Search list for linker or compiler

Type a path name you want to add to the search list

Click to add a path name to the search list.

Click to remove the selected path name from the
search list.

Click to set the options specified in the panel.

2-22 OpenStep Development Tools—September 1996

2

Figure 2-24 Build Button

As the build progresses, the two views at the bottom of the window (see
Figure 2-25) inform you of any warnings or error messages that occur—the
upper Summary view is more selective in what it chooses to display, so you
may choose to hide the lower Detail view and only refer to its output when
you need to.

Figure 2-25 Warnings and Error Messages

If an error is encountered during the build process, a message is displayed in
both the Summary view and the Detail view.

Click on a line in the Summary view to open the specified file; if you click on a
line containing an error message (shown in red), the file opens in Edit and
scrolls to display the line that contains the error.

Summary view

Detail view

Using Project Builder 2-23

2

Build Targets

The shared Makefile used to generate the executable file for all applications
created with Project Builder, app.make , defines a number of alternate targets
to perform specific tasks at various phases of the application development
process. To run the make utility using the alternate targets, select the
corresponding argument from the Targets pop-up list in the Builder display
(see Figure 2-21 on page 2-19).The pop-up list provides various targets, which
are listed in Table 2-5 along with the tasks they perform.

1. Project Builder does not support a “depend” build target. Instead, it uses the Solaris make utility’s
.KEEP_STATE mechanism (see the UNIX manual page for the make utility). The presence of a target name
.KEEP_STATE in a makefile causes the make utility and the compiler to record dependencies in a file called
.make.state . These dependencies are used in future builds to determine which targets are out of date.

Table 2-5 Build Targets

Target1 Task

app/bundle/palette Compiles and links an optimized version of the project. The
target in this first pop-up item can be app, bundle, or palette,
depending on the type of project you are building. The default
target produces the same result.

clean Removes all derived files, such as object and executable files,
from the project directory, returning the project to its
precompiled state.

debug Compiles (with all warnings and -DDEBUG on) and links a
debuggable, unoptimized version of the executable file with
the extension .debug .

profile Generates (with all warnings and -DPROFILE on) the file
ApplicationName .profile , an executable containing code
to generate a gprof report. This option is useful when you are
performance tuning an application. See the UNIX® manual
page gprof for details on profiling.

install Compiles and links an optimized version of the project. Then
copies the application into the installation directory specified
in Project Builder, setting permissions and owners as
appropriate, and strips the installed project. The default
installation directory is $(HOME)/openstep/Apps , the Apps
directory in the user’s home directory.

default Compiles and links the project in the same way as the first
entry in the pop-up list (app, bundle, or palette).

2-24 OpenStep Development Tools—September 1996

2

The Preamble and Postamble Files

Every make command run by Project Builder includes a file named
Makefile.preamble that contains definitions of all the user-configurable
macros that are used in the rest of the Project Builder Makefiles . By default,
this file is /usr/openstep/Developer/Makefiles/Makefile.preamble .

If you need to customize the make process for a project, you can create a local
version of Makefile.preamble in the top directory of the project. The file’s
presence causes it to be included by the project makefiles instead of the
standard /usr/openstep/Developer/Makefiles/Makefile.preamble .

If you need to customize the make process for a project that includes IDL
interface files, see “Defining User-configurable Macros for a Project with IDL
Interfaces” on page 2-27.

Your local Makefile.preamble should contain the following:

include $(OSHOME)/Developer/Makefile/Makefile.preamble
<your customizations>

The include causes the standard Makefile.preamble to be included. Then
<your customizations> can override or add to any of the macros defined
therein.

For example, the standard Makefile.preamble defines the optimization
compiler option as follows:

OPTIMIZATION_CFLAG = -O

To change this to -O2 , your local Makefile.preamble would contain the
following:

include $(OSHOME)/Developer/Makefile/Makefile.preamble)
OPTIMIZATION_CFLAG = -O2

A Makefile.preamble in the top level directory of a project is included by
make commands in all the directories of the project, so a customization
contained therein occurs in the make command in each project directory.

You can also create a customization that applies only to a single directory of a
project. To do so, create a file named Makefile.postamble in that directory.
The presence of this file causes it to be included in the make command for that
directory only.

Using Project Builder 2-25

2

A Makefile.postamble can add to or redefine any of the macros defined in
/usr/openstep/Developer/Makefiles/Makefile.preamble . It can also
define additional targets, or additions to existing targets through the :: make
construct.

You can also build a project by entering make commands into a shell command
line. You can specify any of the targets shown in Table 2-5 on page 2-23. For
example:

make app install

builds an optimized version of the application and then installs it.

You can specify to the make utility, or add to the Build Targets pop-up list, the
additional targets listed in Table 2-6 on page 2-26.

2-26 OpenStep Development Tools—September 1996

2

1. These targets are intended to speed up the execution of make commands during the debugging process. Each
will run a debug mode make command in portions of a multi-directory project. You should use these targets only
when you are sure that the partial updates that result will suffice.

Table 2-6 Additional Build Targets

Target Task

strip Strips the optimized version by removing relocation information.

quick1 Runs a make debug command, but not a make command in a
subdirectory unless a file in that subdirectory has been modified since the
last time it was built. Use this target when you have built the project and
then modified some .m files.

link1 Runs the make utility on only the top level directory of a project, causing
modified files to be compiled and the final link to be performed.

<subdir>1 If a project contains multiple directories, you can run the make utility only
in the top level directory. However, from the top level, you can run the
make utility in individual second level directories by specifying directory
names as targets on the make command. For example, if project gus
contains subproject fred.subproj and bundle sam.bproj , then if you
modify a file in the bundle, you can quickly rebuild the project as follows:

:
make sam.bproj

This runs the make utility in the bundle but will not rebuild the top level
directory or the subproject. If you modify a file in the subproject, then you
could use the following:

make fred.subproj link

The link target is necessary since the result of runnng the make utility in a
subproject is a .o file that must be linked into the top-level executable. The
link target is not necessary on the make sam.bproj command since
bundles are dynamically loaded and do not have to be linked into the top-
level executable.

Using Project Builder 2-27

2

Defining User-configurable Macros for a Project with IDL
Interfaces

If you have included IDL interface files in your project using Interface Builder
(as described in “Adding IDL Template Objects to Your Interface” on
page 3-164), you must create a local version of Makefile.preamble in the top
directory of the project as described in “Creating a Makefile.preamble” , or
perform the steps described in “Using Project Builder to Define User-
configurable Macros” on page 2-28.

Creating a Makefile.preamble
The Makefile.preamble file for a project that includes IDL interface files
must contain the following:

• Modifications to the COMMON_CFLAGS macro to set include file paths for the
header files generated from IDL interface files included using Interface
Builder, if the headers are in different directories than the IDL interface files.
If the headers are in the same directories, then Project Builder sets up the
paths.

• Modifications to the OTHER_LDFLAGS macro to include paths and shared
libraries for the IDL stub libraries generated from the IDL interface files.

• Modifications to the OTHER_LDFLAGS macro for the path and name of the
ODF library.

If the server with which you intend to connect is running in development
mode, you also need to modify OTHER_LDFLAGS to include an additional
relocatable, /opt/SUNWdoe/lib/odf/development_mode.o . This is
required for successful name service lookup on NEO servers running in
development mode.

To find out if the server is running under the development mode start
neoadmin from a shell command line. In neoadmin , type the server
command to view the NEO servers. If the service of interest has a
.development extension, it is running in development mode. For more
information on how to use neoadmin , see .

2-28 OpenStep Development Tools—September 1996

2

The following is a sample Makefile.preamble :

--

include $(PREAMBLE)
COMMON_CFLAGS =-I/opt/SUNWdoe/include \

-I<include path>/odf_output

OTHER_LDFLAGS =-L/opt/SUNWdoe/lib \
-R/opt/SUNWdoe/lib \
-L<library path> \
-R<library path> \
-lOdf -l<stub library>

OTHER_OFILES += /opt/SUNWdoe/lib/odf/development_mode.o

--

Using Project Builder to Define User-configurable Macros
Instead of creating a Makefile.preamble , you can define the user-
configurable macros for a project that includes IDL interface files by using the
project window and performing the following steps:

1. Click on the Builder button in the Project Window to bring up the Builder
display. Click on the Options buttonto open the Options panel.

2. Add the -I options to the Header Search Order list, and add the -L/-R
options to the Library Search Order list.

3. Click on the Files button in the Project Window to bring up the Files
display.

4. Drag the Odf library name and the <stub library> name from the
FileViewer to the Libraries suitcase in the Files display.

5. Drag the development_mode.o file from the File Viewer to the Other
Sources suitcase. Unfortunately, this will make a copy of it. If you do not
want a copy, then before dragging the file, use an ln -s command to link
this .o file into the top directory of the project. When you drag the file to
the Other Sources suitcase, an attention panel will tell you the file already
exists and ask if you want to replace it. Reply No.

Using Project Builder 2-29

2

Setting Preferences

You can specify preferences for a variety of options using the Preferences
panel. To bring up the panel, choose the Preferences command in the Info
menu.

Enter values or click on buttons to specify new preferences. Then click on Set
to set the new preferences (or click on Revert to restore the previous settings).

Note – The settings on the Preferences panel are global—they apply to all
projects, not just the current project. The settings can be overridden for a
specific project by settings you specify in the Build Options panel for that
project (see Figure 2-23 on page 2-21).

Build Defaults Controls

The controls in the Build Defaults group, shown in Figure 2-26, let you specify
alternate targets to display in the Builder display’s Targets pop-up list (see
Figure 2-21 on page 2-19). They also let you specify build arguments to be
passed to the make utility and a remote host on which to build the project. The
switch lets you choose to continue building a project even when a fatal error is
encountered during compiling.

Figure 2-26 Build Defaults Controls

Tools Controls

The controls in the Tools group, shown in Figure 2-27 on page 2-30, let you
specify the programs to use to edit source code and debug the
executable—these files are used in interactive debugging with Project Builder.
You can also specify an alternative to /bin/make, the standard make utility.

2-30 OpenStep Development Tools—September 1996

2

Figure 2-27 Tools Controls

The default editor that Project Builder uses to display files is the OpenStep Edit
application. However, you can configure Project Builder to use a different
editor by entering a command to invoke that editor in the Editor field of the
Preferences panel. If the Editor field does not contain a command that invokes
an OpenStep application, then Project Builder does the following when it
opens a file in the specified editor:

• If the command in the field is vi , Project Builder runs the following
command:

/usr/openwin/bin/xterm -e vi +<lineNum> <fileName>

• If the command begins with xemacs , Project Builder runs the following
command:

gnuclient -q +<lineNum> <fileName>

In order for this command to work, the following conditions must exist:
• The gnuclient application must be found in a directory in your search

path. It is normally in same directory as the xemacs executable file.
• You must already have the xemacs application running and you must

have run the xemacs command M-x gnuserver-start . This command
starts a daemon that is a go-between between the xemacs and gnuclient
applications.

• If the Editor field contains any command other than vi or xemacs , Project
Builder runs the following

<command> +<lineNum> <fileName>

For example, if you want to use shellTool instead of xterm to run the vi
application, the command could be the following:

/usr/openwin/bin/shelltool vi

Using Project Builder 2-31

2

Sounds Controls

The controls in the Sounds group, shown in Figure 2-28, let you specify the
sound cues for Project Builder to use when the project builds successfully, and
when the project fails to build.

Figure 2-28 Sounds Controls

Build Service Controls

The controls in the Build Service group, shown in Figure 2-29, let you specify
what (if anything) you want to have happen after building your project
(specifically, after building your project by choosing Project Builder’s Build
command on the Services menu)—Build only, Build and Run, or Build and
Debug.

Figure 2-29 Build Service Controls

Save Options Controls

The controls in the Save Options group, shown in Figure 2-30, let you specify
whether projects should be autosaved, and whether the most recent backup file
is automatically deleted or retained.

Figure 2-30 Save Options Controls

2-32 OpenStep Development Tools—September 1996

2

Running and Debugging an Application
In addition to maintaining and building a project, you can use Project Builder
to run or debug the resulting application, as described in the following
sections.

Running

To run the project application, click on the Run button in the project window,
shown in Figure 2-31. If the project has not been built yet, it is built and then
the application is run. The Run button’s icon is the same as the application
icon—the icon shown here is the default application icon that Project Builder
uses if no other icon is specified in the Attributes display.

Alt-clicking on the Run button runs the application without building it first.

Figure 2-31 Run Button

Debugging

To debug the project application, click on the Debug button in the project
window, shown in Figure 2-32. If the project has not been built yet, it is built
first and then the application is run in debug mode.

Alt-clicking on the Debug button runs the application under the SPARCworks
Debugger without building it first.

Figure 2-32 Debug Button

Using Project Builder 2-33

2

When you indicate that you want to debug an application in Project Builder,
the following steps occur:

• The project is built (unless it is already up to date).

• Terminal creates a new window in which to run the Debugger process.

For information about using the SPARCworks Debugger, see the SPARCworks
manual Debugging a Program.

Project Builder Command Reference
Project Builder’s main menu contains the standard Info, Edit, Windows,
Services, Hide, and Quit commands. All commands unique to Project Builder
are located in the Project and Files submenus—these menus and the commands
they contain are described below.

Commands in the Project Menu

The Project menu contains commands for creating and maintaining your
projects, as listed in Table 2-7.

Table 2-7 Project Menu Commands

Command Description

New Creates a new project.

Open Opens an existing project.

Open Makefile Opens a window for just the Makefile of a project and displays
the Builder view in the window. To build the project, click on
the Build button.

Save Saves the current project.

New Subproject Creates a new subproject

Add Help
Directory

Adds a Help directory to the current project. A template Table
of Contents file and Index file are placed in the Help directory.
For more information on adding help to an application, see
“Attaching Help to Objects” on page 3-132 and “Adding Help
Links” on page 4-17.

2-34 OpenStep Development Tools—September 1996

2

Commands in the Files Menu

The Files menu contains commands, shown in Table 2-8, that affect the files
that make up a particular project. Commands in this menu are enabled only
when the Files view for the project is selected.

Run Application Runs the application associated with the project, just as if you
had clicked on the Run button in the project window.

Debug Application Debugs the application associated with the project, just as if
you had clicked on the Debug button in the project window.

Build Application Builds the application associated with the project, just as if you
had clicked on the Build button in the project window.

Table 2-8 File Menu Commands

Command Description

Add Adds a file to the selected suitcase in the current project. Be
sure to select the appropriate suitcase in the Files display
before choosing the command.

Open in Workspace Opens the selected file in the application that is registered
with the Workspace Manager as the default application for
files of that type.

Select in Workspace Displays and highlights the selected file in the Workspace
Manager’s File Viewer window.

Remove Removes the selected file from the current project (without
deleting it from the project directory).

Sort Alphabetically sorts the files in the current suitcase.

Make Global Makes the selected file global (that is, moves it from the
Language .lproj directory into the project directory).

Table 2-7 Project Menu Commands (Continued)

Command Description

Using Project Builder 2-35

2

Make Localizable Makes the selected file localizable (that is, moves it from the
project directory into the Language .lproj directory).

Make Public Makes the selected header file public. The file is flagged in the
File view in the Project window. Public files are also flagged
in the PB.Project directory and the makefile so that they
are installed in a target directory where they can be accessed
by others when the header files are installed by the Make
utility.

Make Private Makes the selected public header files private; that is, reverses
the effects of Make Public.

Table 2-8 File Menu Commands (Continued)

Command Description

2-36 OpenStep Development Tools—September 1996

2

3-1

Working with Interface Builder 3

Interface Builder is a tool that helps you design and build applications. It
speeds the creation of applications by letting you define an interface (and in
some cases, an entire application) graphically rather than by writing C and
Objective C code. With Interface Builder, you drag objects from palettes of
OpenStep objects directly into the application you are building. Once there, an
object can be modified in ways that are specific to its class: You can set an
NSButton object's title or set the minimum and maximum values of an
NSSlider object, for example. After you have gathered and edited the objects
that will make up your application, Interface Builder lets you define the
interactions among them and associate help messages with each of them. Even
before you write a line of code, you can run your application within Interface
Builder to check the operation of its interface.

Interface Builder's technique of direct manipulation of programming objects is
not limited to objects defined in OpenStep. Interface Builder's palettes are
extensible, letting you load palettes containing objects that you or other
developers have created.

In many ways, using Interface Builder to create an application is much like
using a graphics editor to create a drawing. However, Interface Builder is not a
simple “screen painter” or form-generation tool. When you build an
application with Interface Builder, you are interacting with the actual
programming code that will be run when your application runs on its own.
The objects you manipulate in Interface Builder are the objects that will appear
in the working version of your application. If your application runs correctly in
Interface Builder, it will run correctly on its own.

3-2 OpenStep Development Tools—September 1996

3

The work you do in Interface Builder is saved in a nib file (a file package
having a name ending in .nib . This file contains archived versions of the
objects you assembled for your application, information about connections
between these objects, and other information. When an application begins
running, it unarchives these objects and associated information from one or
more nib files. Projects in OpenStep contain at least one nib file and Interface
Builder lets you create and modify these nib files.

The central tool for developing applications in OpenStep is Project Builder.
When you start a new project in Project Builder, you are provided with several
standard components, one being a nib file. When you want to modify this
standard nib file, Project Builder invokes Interface Builder as the nib file's
editor. Interface Builder and Project Builder are interlinked in other ways as
well. As you define new classes, import images or sounds, or create new nib
files, Interface Builder and Project Builder work together to keep each other
aware of the state of the project.

Even if you are new to this computing environment, you will find that with
Project Builder and Interface Builder, you will be able to create applications
with a minimum of time and effort. This efficiency results from working
directly with the application's objects, rather than with files of programming
code. However, the more you know about the Application Kit and the more
comfortable you are with programming in the Objective C language, the easier
application development will be for you. Thus, we recommend that you
familiarize yourself with the material in Chapter 8, “The Objective C
Language" and Chapter 7, “The NSObject Class," and at least scan the class
specifications (located in Chapter 1 of OpenStep Programming Reference) for the
major Application Kit classes before attempting to take your work with these
tools beyond the experimental stage.

This chapter provides both general reference information and detailed task-
oriented information on Interface Builder. It first introduces Interface Builder's
major components and then discusses the tasks that you use Interface Builder
to accomplish. A final section provides a quick reference for each of Interface
Builder's commands.

Interface Builder's application programming interface (API), which allows you
to create custom palettes, is described in detail in Appendix B, “Interface
Builder Application Programming Interface," Appendix C, “Interface Builder
API Classes," Appendix D, “Interface Builder API Protocols," and Appendix E,
“Interface Builder API Types and Constants."

Working with Interface Builder 3-3

3

An Orientation
When you use Interface Builder, its windows—and the windows of the
application under construction—share the screen. Figure 3-1 gives you an idea
how this looks.

Figure 3-1 Interface Builder and Your Application

Main menu Palettes window

Nib file window Inspector panel

Your application

3-4 OpenStep Development Tools—September 1996

3

Interface Builder's windows frame an area of the workspace where you build
your application. At the upper left is the main menu, which gives you access to
Interface Builder's tools and commands, and at the upper right is the Palettes
window.

The Palettes window is the source of objects (NSButtons , NSSliders ,
NSWindows, and so on) that you can drag into your application. The Palettes
window is described in detail in “Using the Palettes” on page 3-27.

Below the Palettes window is the Inspector panel. You use this panel to set the
attributes of an object, to connect it to other objects, and to review the
attachments between objects and help messages. The Inspector panel is
described in “The Inspector Panel” on page 3-21.

At the bottom left is the nib file window. The nib file window displays your
application’s top-level objects (its windows, main menu, and so on) and gives
you access to the image, sound, and class resources that are available to your
application. For a description of the nib file window and its various displays,
see “The Nib File Window” on page 3-10.

Building an Application with Interface Builder
The Application Kit defines a library of user-interface objects that you can
select from for your application. Interface Builder makes the selection process a
graphical one: You simply drag the object you need from the Palettes window
into the application you are building. By building an application in this way,
you can be sure that its interface will work properly and will, in a broad sense,
conform to the interface standards for OpenStep applications. See “Using the
Palettes” on page 3-27 for a description of the Palettes window and the objects
available to you on the OpenStep palettes.

Specifying Object Attributes

Once an object is added to your application, you can adjust the values of many
of its instance variables directly. For example, to change the size of a button,
you drag one or more of its sides to a new position. Changing the image on the
screen changes the value of the NSButton object’s frame instance variable. For
attributes that are not easily represented graphically, Interface Builder provides
the Inspector panel that lets you set the values for particular instance variables.

Working with Interface Builder 3-5

3

You set the maximum and minimum values of a slider with the NSSlider Size
inspector, for example. The Inspector panel is described in “The Inspector
Panel” on page 3-21.

Interconnecting Objects

Interface Builder also lets you interconnect objects so that they can
communicate with one another. For example, a button can be connected to the
window it is displayed in so that when the button is clicked on, the window
closes. Such connections are made through an object’s outlets and actions.

An outlet is an instance variable that identifies another object in the application.
Common examples of outlets include an NSControl ’s target or an
NSApplication or NSWindow object’s delegate. An NSTextField object may
have an instance variable nextText that points to another NSTextField
object.

An action is a message that one object sends to another when it receives a
certain message of its own. For example, an NSButton object sends an action
messages when it receives the performClick: message (when the user clicks
on the button).

Adding Code to Your Application

The objects in the Application Kit are general-purpose and fill the needs of a
wide cross-section of applications. What makes your application unique is the
code you write. For example, the Application Kit provides the NSButton
objects and other NSView objects you need to implement an interface for a
calculator, but you have to create the computational engine. Interface Builder
helps you declare classes that encapsulate the code that is unique to your
application.

Interface Builder and the Objective C language encourage a style of
programming that puts your application’s unique code in one or more objects
of your own design. The application’s user-interface objects handle routine
business, such as displaying the main menu or hiding the application, and also
serve to interpret the user’s actions for the objects you design. If the user clicks
on the calculator’s Add button, the Application Kit highlights the button and
then sends a message to your calculator object to perform the addition.

3-6 OpenStep Development Tools—September 1996

3

Using this style of programming, your application will generally contain a
number of standard Application Kit objects and one or more subclasses of
NSObject and NSView. Most often, the subclasses of NSObject embody the
logic that is unique to your application, and the NSView subclasses contain the
drawing code that is unique to your application. You will rarely need to create
subclasses of other Application Kit classes.

Composing the Interface
To compose your application's interface, you just drag objects off a palette,
drop them on a window or other "surface," and then manipulate and arrange
them into an effective user interface. This section introduces you to Interface
Builder by showing how to compose the elements of your interface.

Opening a Nib File

To open your application’s nib file, do one of the following:

• Double-click a nib file in Project Builder.

Or

• Double-click a nib file in the nib file window.

Or

• In Interface Builder, choose the Open command and select a file in the Open
Panel.

You will usually open a nib file in Project Builder, as shown in Figure 3-2, since
that is the central tool for application development. When you create an
application in Project Builder, an empty nib file is automatically created for
you and added to the project's Interfaces suitcase. This file has the same name
as your application project and, like all nib files, ends with the extension .nib .

Working with Interface Builder 3-7

3

Figure 3-2 Opening a Nib File in the Project Builder Window

You can also open nib files directly in the Workspace's File Viewer by double-
clicking on them. And you can open nib files from within Interface Builder by
choosing the Open command from the Document menu; in the Open panel
locate and select the file as shown in Figure 3-3.

Click on Interfaces,
then select a nib
file.

Double-click on the
Interface Builder
icon.

3-8 OpenStep Development Tools—September 1996

3

Figure 3-3 Opening a Nib File in the Open Panel

Nib files (so called because of their .nib extension) archive the class
definitions, objects, and the connections between objects when you create an
interface in Interface Builder. See “What Is in a Nib File” on page 3-24 for some
conceptual background on nib files.

 When Interface Builder Starts

When you open a nib file, Interface Builder displays several windows and
panels on your screen.

Select the
appropriate .lproj
directory.

English.lproj
contains nib files
and other resource
files for applications
that are localized for
readers of English.

Select a nib file
(extension of
.nib).

Click here
to open the
nib file.

Working with Interface Builder 3-9

3

The Palette Window

The palette window, shown in Figure 3-4, holds all currently loaded palettes of
objects. You select a palette by clicking on its icon (if it is not already visible).
Then drag objects from the palette to the appropriate surface.

Figure 3-4 The Palette Window

The Application Kit palettes as described in detail in “Using the Palettes” on
page 3-27.

The Interface Window

The interface window or panel displays the actual interface on which you are
working. If this is the first time you have opened a main nib file in Project
Builder, an empty window is displayed. Figure 3-5 shows an example of an
interface window.

3-10 OpenStep Development Tools—September 1996

3

Figure 3-5 An Interface Window

The Nib File Window

The nib file window, shown in Figure 3-6, contains multiple views that display
the contents of the nib file. Selected by clicking on a folder tabs, these views
show archived objects; the connections among objects, the current class
hierarchy (including any custom classes that you may have created), and the
images and sounds stored in the nib file.

Each window in the nib file is represented by a window icon in the nib file
window. By double-clicking on a window icon, you can bring the window it
represents to the front so that the objects it contains are visible. The nib file
window also contains icons that represent the file’s owner object and a first
responder object, objects that are discussed in “The Nib File’s Owner” on
page 3-18 and “The First Responder Object” on page 3-20.

Working with Interface Builder 3-11

3

Figure 3-6 The Nib File Window

The nib file window contains five displays:

• Instances display in icon mode

• Instances display in outline mode

• Classes display

• Images display

• Sounds display

• IDL display

Icon Mode of Instances Display
To display the object of your application’s interface as icons, use the icon mode
of the nib file window’s Instances display, shown in Figure 3-7.

3-12 OpenStep Development Tools—September 1996

3

Figure 3-7 Icon Mode of Instances Display

Only the top level of your interface's object hierarchy is displayed in icon
mode. Object hierarchy is the hierarchy of objects in your interface. For example,
any button on a window is displayed below that window in the object
hierarchy. Icon mode would display only the window, not the button.

To display all of the objects in the object hierarchy, use the outline mode of the
Instances display (see “Outline Mode of Instances Display” on page 3-12).

To select an object in icon mode, click on it. To display an object in the
workspace, double-click on it.

Outline Mode of Instances Display
For a view of all of the objects in your application’s interface, use the outline
mode of the nib file window’s Instances display shown in Figure 3-8.

Click on the top button Icon mode represents
objects graphically.

Working with Interface Builder 3-13

3

Figure 3-8 Outline Mode of Instances Display

Outline mode displays the entire object hierarchy of your interface. For
example, any button in a window is displayed below that window in the object
hierarchy. Outline mode shows the button indented below the window that
contains it.

Click on the button to the left of an object’s name to see the objects that this
object owns. Click on the button again to hide these objects. If the button is
empty and shaded, the object it represents does not own any objects.

The buttons to the right of each object show connections to and from that
object. Click on the left button to see the object’s outlets and the action
messages sent to the object. Click on the right button to see which objects have
outlets into the object and the action messages the object sends to other objects.

Click on the
bottom button
to use
outline mode.

Each line in
the display
represents an
object in the
interface.

Click here
to show
connections
out from this
object.

Click here
to show
connections
into this
object.

If this button is filled, the subhierarchy below this object is hidden.

3-14 OpenStep Development Tools—September 1996

3

To select an object in outline mode, click on it. To display an object in the
workspace, double-click on it.

Classes Display
Use the Classes display of the nib file window, shown in Figure 3-9, to do the
following:

• Subclass OpenStep classes

• Add already-defined subclasses to the nib file

• Change the definition of a class

• Delete classes

Figure 3-9 Classes Display

See “Creating a Class” on page 3-137 for information on using this display to
add, modify, and delete subclasses.

Click here to
see the Classes
display.

To rename a class,
outlet, or action, select
the text, type the new
name, and press Return.

These buttons
display outlets
and actions.

To add an outlet or action,
select one of these words
and press Return.

To delete an outlet or
action, click on it, then
press the Backspace key.

Working with Interface Builder 3-15

3

The Classes display shows the classes known to your interface. Black titles are
used for classes you have added to the interface. These are the only classes you
can modify and delete. Gray titles are used for OpenStep classes.

Images Display
Use the Images display of the nib file window, shown in Figure 3-10, to add
images to your interface and to add an image to an object in your interface.
The images display shows the images known to your interface.

Figure 3-10 Images Display

A new nib file contains images for radio buttons, switches, and the return
symbol, which you can add to a button to have it perform a click when the
user presses the Return key.

Drag an image to
a button to add it
to the button.

3-16 OpenStep Development Tools—September 1996

3

Black titles are used for images local to the nib file. You can rename these
images, and you can delete an image by selecting it and pressing the Backspace
key. Gray titles are used for standard images and images added to the project
using Project Builder.

To see what an image looks like before you add it to your interface, select it,
then choose Tools from the Interface Builder menu, and choose Inspector from
the Tools menu. For information on the attributes of an image that are
displayed in the Inspector window, see “Managing Sounds and Images” on
page 3-78.

Note – You can also add an image to your interface by dragging a TIFF or EPS
file from the File Viewer.

Sounds Display
Use the Sounds display of the nib file window, shown in Figure 3-11, to add
sounds to your interface and to add a sound to an object in your interface. The
Sounds display shows the sounds known to your interface.

Working with Interface Builder 3-17

3

Figure 3-11 Sounds Display

All nib files contain a subset of the sounds in the standard sounds directory,
/usr/openstep/Library/Sounds . Also, all sounds you add to the project
using Project Builder are added to the nib file.

Black titles are used for sounds local to the nib file. You can delete a sound by
selecting it and choosing Cut from the Edit menu. Gray titles are used for
standard sounds and sounds added to the project using Project Builder.

To hear a sound before you add it to your interface, select it, choose Tools from
the Interface Builder menu, then choose Inspector from the Tools menu. For
information on the attributes of a sound that are displayed in the Inspector
window, see “Managing Sounds and Images” on page 3-78.

Drag a sound to a
button to add it to
the button.

3-18 OpenStep Development Tools—September 1996

3

Note – You can also add a sound to your interface by dragging a file with the
extension .snd or .au from the File Viewer.

IDL Display
Use the IDL display of the nib file window, shown in Figure 3-12, to do the
following:

• Parse IDL (Interface Definition Language) interface files

• Instantiate IDL template objects in the nib file

Figure 3-12 IDL Display

The IDL display shows the IDL types known to your interface. You can
instantiate template objects from these IDL interfaces (see “Adding IDL
Template Objects to Your Interface” on page 3-164). Then you can connect these
IDL objects to outlets in instances of custom classes you have defined (see
“Connecting Objects” on page 3-113).

The Nib File’s Owner
The nib file’s owner is an object that is external to the nib file and that is the
conduit for messages between the objects that will be unarchived from the nib
file at run time and the other objects in your application. In general, the core
objects in your application access the objects unarchived from the nib file

Working with Interface Builder 3-19

3

indirectly through the owner object. In turn, the unarchived objects
communicate with the other objects in your application by sending messages
to the owner object.

Each nib file has one—and only one—owner. For small applications, the owner
is generally NSApp, the application object itself, although it can be an object of
any class. You can change the type of object that owns an auxiliary nib file
using the Inspector window.

The owner is the only external object that may be the explicit target of action
messages from NSControls within the nib file. The owner may also have
outlets that will be initialized at run time to point to the objects within the nib
file.

The owner of a nib file is represented by an icon in the nib file window, shown
in Figure 3-13. You use this icon to make connections between objects stored in
separate nib files. When the application object is the file’s owner, the icon is a
terminal.

Figure 3-13 File’s Owner Icon

The owner must exist before the interface objects are loaded. For example,
Project Builder generates a main file that follows this sequence of messaging to
create the owner, load the interface information, and then run the following:

NSApplication *app = [NSApplication sharedApplication];
if ([NSBundle loadNibNamed: @"CustServ.nib" owner: app])

[app run];

Note – NSApp is a global variable that identifies the NSApplication object,
the object that is created by the message in the first line of the example above.
(For more information on the loadNibSection:owner:withNames:
method—and especially on the search path it uses for locating the appropriate
nib file to load—see the specification for the NSApplication class.)

What happens when the nib file is loaded at run time is described in “When
You Load a Nib File” on page 3-27.

3-20 OpenStep Development Tools—September 1996

3

The First Responder Object
The First Responder icon in the nib file window, shown in Figure 3-14,
represents the object within a window that will be the first to receive keyboard
events, mouse-moved events, and action messages from NSControl objects
that do not have an explicit target.

Figure 3-14 First Responder Icon

In most cases, a window’s first responder is either one of its NSText objects or
one of the objects that use NSText objects (such as NSForm, NSTextField ,
and NSScrollView objects). Clicking on one of these objects generally makes
it that window’s first responder.

Over time, many different objects can become the first responder, but at any
one time, only one object has this status. The First Responder icon stands for
the object that has this status, no matter which actual object it is within your
application. In this respect, the First Responder icon is really a fiction since it
identifies no one particular object, but rather any object having a particular
status. This fiction, however, is very useful.

The object represented by the icon changes when the position of the text
pointer changes. For example, if you click on the pointer in a text field labeled
Name and start to type, the Name text field receives the keystrokes. It is the first
responder. If you move the pointer to a field labeled Address and start to
type, Address receives the keystrokes, so it is the first responder.

You can use the First Responder icon to send messages to any object that
currently contains the text pointer. For example, the Cut , Copy, and Paste
commands in the Edit menu send messages to the first responder object.

Having First Responder in the nib file window lets you connect an object, such
as the NSMenuCell that sends the copy: message, so that it sends its action
message to a target whose identity changes over time. Thus, for example, the
Copy command can be set up to work with any NSTextField in a window, as
long as the NSTextField is the first responder. If you create a new application

Working with Interface Builder 3-21

3

in Project Builder, open its nib file, and check the connections in the
application’s Edit menu, you will discover that all Edit commands are
connected to the First Responder.

The ability to let the target of a message be defined at run time rather than at
compile time is an example of dynamic binding in Objective C. For more
information on Objective C, see Chapter 8, “The Objective C Language,” and
Chapter 9, “The Objective C Extensions.”)

The Inspector Panel

The Inspector panel, shown in Figure 3-15, is a multiform panel that displays
the attributes, connections, and size of a selected object. It also presents the
object's resizing characteristics and its associated help.

Figure 3-15 The Inspector Panel

3-22 OpenStep Development Tools—September 1996

3

You can control whether the palette window and the Inspector panel appear
when Interface Builder starts by checking the appropriate boxes in the
Preferences panel.

You use the Inspector panel to edit the properties of both NSView and non-
NSView objects in your application. You can use the panel to do the following:

• Display information about an object

• Set an object’s attributes

• Connect two objects

• Display a help topic attached to an object or attach a help topic to an object

The Inspector panel is displayed when you choose the Inspector command in
Interface Builder’s Tools menu.

The panel has many personalities. Its contents are determined by Interface
Builder’s selection: If an NSButton object is selected, the Inspector panel
displays the NSButton Inspector; if an NSWindow is selected, the panel
displays the NSWindow inspector. (The Inspector panel’s title announces the
class of the selected object.) In addition, the panel itself has four
displays—Attributes, Connections, Size, and Help—which are accessible
through the pop-up list at the top of the panel. These four displays are
discussed in “Setting Object Attributes” on page 3-63, “Sizing Windows and
Panels” on page 3-36, “Positioning and Sizing Precisely” on page 3-40,
“Automatically Resizing Objects” on page 3-98, “Making and Managing
Connections” on page 3-109, and .

Creating a Nib File

To create a new nib file, do one of the following:

• Choose one of the panels in the New Modules submenu of the Document
menu.

Or

• Choose New Empty from the New Modules submenu, then drag a window
or panel from the Windows palette.

Or

• Choose New Application from the Document menu.

Working with Interface Builder 3-23

3

Nib files are created for you automatically when you create applications in
Project Builder. But sometimes you need to create nib files directly in Interface
Builder, typically when you want to add additional windows and panels to
your application.

To create a new panel (and the nib file that contains it) choose the desired
panel type from the New Module submenu of the Document menu. For
example, if you choose New Info Panel, you get the template panel shown in
Figure 3-16.

Figure 3-16 New Info Panel

Most commands of the New Module submenu create new nib files that contain
a special kind of ready-made panel; your application can later load these nib
files when it needs them. The New Empty command just creates an empty nib
file; you must create the windows and panels for it by dragging these objects
from the Windows palette. The New Application command in the Document
menu can create your application's main nib file (a nib file with the owner of
Application) if that has not already been done for you in Project Builder.

Note – You can have auxiliary nib files, such as an Info panel, that you load
into your program only when you need to.

Saving the Nib File

An UNTITLED nib file window is displayed for each newly-created nib file.
After you make changes to an interface, remember to save the nib file. Choose
Save from the Document menu and specify a path and file name in the Save
Panel as shown in Figure 3-17. Interface Builder may ask if you want to insert
the file into your project; you usually confirm by clicking on Yes.

3-24 OpenStep Development Tools—September 1996

3

Figure 3-17 Saving a Nib File

What Is in a Nib File

When you save an interface in Interface Builder, it is archived to a nib file.
Every application has a main nib file, which contains the main menu and often
a window and other objects. A nib file (actually a file package) has the
extension .nib . This nib file contains the following:

• Archived objects, in their hierarchy

• Sound and image data

• Information on custom classes

• Connection information

Archived Objects

The nib file stores encoded information on kit objects such as those shown in
Figure 3-18, including their size, location, and position in the object hierarchy
(for NSView objects, determined by superview/subview relationship). At the

Select a localized resource
subdirectory (.lproj extension) of
the project directory.

Click here to save the file.

Type the name of the nib file. You
can omit the .nib extension,
since it is automatically added.

Working with Interface Builder 3-25

3

top of the hierarchy of archived objects is the File's Owner object, a proxy
object that points to the actual object that owns the nib file. (For a description
of File's Owner, see “The Nib File’s Owner” on page 3-18.)

Figure 3-18 Archived Objects

Sounds and Images

Any sound or image files (TIFF or EPS) that you drag and drop over the nib
file window are stored in the nib file and represented by the icons shown in
Figure 3-19. The Sounds and Images displays of the nib file window are
described in “Sounds Display” on page 3-16 and “Images Display” on
page 3-15.

Figure 3-19 Sounds and Images

Class References

Interface Builder can store the details of kit objects and objects that you
palettize (static palettes), but it does not know how to archive instances of your
custom classes since it does not have access to the code. For these classes,
Interface Builder stores a proxy object to which it attaches class information, as
shown in the example in Figure 3-20 on page 3-26.

3-26 OpenStep Development Tools—September 1996

3

Figure 3-20 Custom Class Information

Connection Information

A nib file also contains information (such as that represented in Figure 3-21)
about how objects within the object hierarchy are interconnected. Connector
objects special to Interface Builder store this information. When you save the
document, connector objects are archived in the nib file along with the objects
they interconnect.

Figure 3-21 Connection Information

MyClass = {
 ACTIONS = {
 dothis;
 };
 OUTLETS = {
 textField;
 };
 SUPERCLASS =
 NSObject;

dothis;

textField

Working with Interface Builder 3-27

3

When You Load a Nib File

The following things take place when you load a nib file with the
loadNibSection:owner:withNames: method:

• The run-time system unarchives the objects from the object hierarchy,
allocating memory for each object and sending it a read: message. After its
unarchived, an object receives awake and finishUnarchiving messages.

• It unarchives each proxy object and queries it to determine the identity of
the class that the proxy represents. Then it creates an instance of this custom
class (alloc and init) and frees the proxy.

• The system unarchives the connector objects and allows them to reestablish
connections, including connections to File's Owner.

• As the final step, the run-time system sends awakeFromNib to all objects
that were derived from information in the nib file, signalling that the
loading process is complete.

Using the Palettes

Palettes store ready-made objects that you can add to your interface. Drag the
object from the palette to add it to your interface.

When the grid in your interface is turned on and you add or move an object,
the object snaps to the grid. Similarly, when you add a new object to the
window or resize an object, the dimensions of the object snap to the grid.

The Palette window displays the palettes available to you. The window usually
is displayed in the upper right corner when you start Interface Builder (see
Figure 3-1). Choose Palettes from the Palettes submenu to display the Palette
window if it is not visible. The Tools menu contains the Palettes submenu.

Each palette is represented in the window by an icon. If more than four
palettes are loaded, a horizontal scroll bar gives access to those palette icons
that are not visible. Click on an icon to display that palette.

The palettes for the Application Kit—the Menus palette, the Views palette, the
TextViews palette, and the Windows palette—are loaded by default. These
palettes provide windows, panels, browsers, scroll views, buttons, text fields,
and a number of other interface objects.

3-28 OpenStep Development Tools—September 1996

3

You can create your own palettes of objects. Custom palettes that you create
fall into two categories: static palettes, which are created as separate projects,
and dynamic palettes, which you create while you create your interface. For
more information on creating palettes, see “Adding Custom Palettes,
Inspectors, and Editors” on page 3-169.

The Menus Palette

Add a menu cell to your interface by dragging it from the Menus palette,
shown in Figure 3-22, into your interface's menu.

.

Figure 3-22 The Menus Palette

All of the menu cells on this palette create standard OpenStep menus except
for the Item and Submenu cells.

See OpenStep Programming Reference for the types of messages a menu cell can
receive.

The Views Palette

Create an NSView object by dragging it from the Views palette into a window
or panel in your interface. The Views palette, shown in Figure 3-23, contains
objects created from subclasses of the NSView classes.

Working with Interface Builder 3-29

3

Figure 3-23 The Views Palette

You can create an NSMatrix from an NSTextField , NSForm, NSSlider , or
NSButton object by holding down the Alt key and dragging one of the resize
handles of the selected object until several copies are made. You can also add
and delete rows and columns in the same manner.

The individual objects within an NSMatrix are NSTextFieldCells ,
NSFormCells , NSSliderCells , or NSButtonCells . You can set attributes
for the NSMatrix object that apply to all of the cells, or for each cell
individually.

Copying an NSView object copies all of the NSView objects within that object
(its subviews) as well.

NSView objects that display text appear on the TextViews palette (see “The
TextViews Palette” on page 3-30).

Use the NSCustomView object to create an object from a subclass of NSView
that does not appear on the Views palette or the TextViews palette.

3-30 OpenStep Development Tools—September 1996

3

The TextViews Palette

Add a text viewer to your interface by dragging it from the TextViews palette,
shown in Figure 3-24, onto a window or panel in your interface.

Figure 3-24 The TextViews Palette

The Windows Palette

Add a window or a panel to your interface by dragging it from the Windows
palette, shown in Figure 3-25, to anywhere in the workspace.

Working with Interface Builder 3-31

3

Figure 3-25 The Windows Palette

To use a subclass of NSWindow other than NSPanel , drag an NSWindow object
into the workspace, select it, and change its class using the Inspector panel.

See OpenStep Programming Reference for the types of messages an NSWindow or
NSPanel object can receive.

Adding an Object from a Palette to Your Interface

To add an object from a palette to your application’s interface, do the
following, as shown in Figure 3-26:

1. Choose the palette you want.

2. Drag an object from the palette to the appropriate "surface."

3. Release the mouse button.

3-32 OpenStep Development Tools—September 1996

3

Figure 3-26 Dragging an Object from a Palette to the Application Interface

Note – Where you "drop" a window or panel is important, since that sets its
initial position on the screen, the location where it is displayed when the
application starts or when its nib file is loaded.

“Where Palette Objects Go” on page 3-34 illustrates the proper "surfaces" for
interface objects.

Click on a palette icon
to choose a palette.

Drag an object from
the palette to the
appropriate part of
the interface.
Release the mouse
button when the
object is in position.

Working with Interface Builder 3-33

3

Placing Interface Objects

To move an interface object within a window or panel in your application’s
interface, do the following, as shown in Figure 3-27:

1. Select the object you want to move.

2. Drag the object to the new location in the window or panel.

Figure 3-27 Placing an Interface Object

To move an object around the "surface" of a window or panel, select the object
and drag it with the mouse. The currently selected object has resizing handles
around its perimeter.

When you move an object, make sure that the mouse pointer is inside the
object and not on a resize handle.

For greater precision, select an object and press the arrow keys; this moves the
object an incremental distance in the required direction. If the alignment grid is
off, this distance is one pixel; if it is on, it is the distance of the grid.

You can adjust the size and location of objects precisely by specifying their
origins, width, and height in the Size display of the object's Inspector. See
“Positioning and Sizing Precisely” on page 3-40 for details.

Cllick on the object so the
resizing handles appear.

When you drag the object,
you can move it anywhere
inside the window or panel.

3-34 OpenStep Development Tools—September 1996

3

Selecting Multiple Objects

You can select multiple objects and then move, copy, or do other things with
them as a group. There are two ways to select more than one object:

• Hold down the Shift key while you click on objects in succession.

• Click in an empty area, then draw a "rubberbanding" rectangle around all
objects you want selected.

After making the selection, press (do not momentarily click) the mouse pointer
on one of the objects and drag the group to the new location. (Or do another
suitable operation, such as copy and paste.)

To deselect an object in a grouped selection, hold down the Shift key and click
on that object.

You cannot do sizing operations on multiple selected objects.

To select all objects in a window or panel, first select the window or panel, and
then choose the Select All command from the Edit menu. You can select all
items in the Instances or Classes display by choosing Select All from the Edit
menu. The command-key equivalent for Select All is Command-a.

Where Palette Objects Go

You can put windows and panels anywhere in the work space as shown in
Figure 3-28. Nothing contains them except the screen.

Figure 3-28 Putting a Panel in the Workspace

Working with Interface Builder 3-35

3

You put items from the Views and TextViews palettes— buttons, labels, pop-up
menus, fields, boxes, text fields, scroll views, browsers, custom NSViews —
anywhere within the bounds of a window or panel as shown in Figure 3-29.

Figure 3-29 Putting NSViews and NSTextViews in aWindow

You drag a menu cell from the Menu palette and drop it in the application's
menu as shown in Figure 3-30. When you release the mouse button, Interface
Builder inserts the cell between the two menu commands underneath it.

Figure 3-30 Putting a Menu Cell in the Application’s Menu

3-36 OpenStep Development Tools—September 1996

3

Sizing Windows and Panels

After you drag a window or panel from the Windows palette and drop it on
the screen, you will probably want to resize the object to a suitable dimension.
To resize a window or panel, do one of the following:

• Drag the resize bar in the direction you want the window to grow.

Or

• Bring up the Inspector panel and enter the dimensions in the Size display.

To resize a window, drag the resize bar in the required direction as shown in
Figure 3-31.

Figure 3-31 Sizing a Window with the Resize Bar

Many panels and some windows are not set for resizing and therefore do not
have a resize bar visible. To make this bar temporarily visible for resizing in
Interface Builder, check the miniaturize switch button in the Controls section of
the Attributes inspector for the window.

Drag corner
sideways to
change width
only.

Drag center of bar
down to change
length only.

Resize bar

Drag corner
in diagonal
direction to
change
both length
and width.

Working with Interface Builder 3-37

3

You can also resize windows and panels with greater precision by entering the
exact dimensions in the Size display of the Inspector panel as shown in
Figure 3-32. To bring up the Size Inspector for a window, select the window by
clicking on its title bar, then choose Inspector from the Tools menu (or press
Command-3).

Figure 3-32 Sizing a Window with the Size Display of the Inspector Panel

You can also use the Inspector panel to size NSView objects with numerical
exactness. See “Positioning and Sizing Precisely” on page 3-40 for further
information.

Also see “The Coordinate System in Interface Builder” on page 3-49 for some
conceptual background.

3-38 OpenStep Development Tools—September 1996

3

Initializing Text

Many of the palette objects include text as a component. Buttons of all sorts
usually have titles, boxes usually name the elements they group, and so on.
Interface Builder initially sets the text in most of these objects to the name of
the object itself (such as "Button" or "Text"). After you drag the palette object
onto a window or panel, you will probably want to delete these text strings or
rename them to something meaningful. This text is what is initially displayed
when your application loads the nib file; your application can later change the
text.

To change the text in an interface object, do the following, as shown in
Figure 3-33:

1. Select the object.

2. Double-click on the text inside the interface object.

3. Edit the text.

4. Deselect the text by clicking outside of it.

Figure 3-33 Editing the Text on an NSButton (Switch) Object

Once text is selected, you can move the pointer among the characters by
pressing the left and right arrow keys; you can delete characters by pressing
the Delete key. Text fields are initialized to "Text" (which you will almost
always want to delete). To delete this, double-click on it and press the Delete
key.

Double-click on the text to select it. Type the new text. When finished, click
outside the object to set the text.

Working with Interface Builder 3-39

3

Matrices—compound objects, such as radio buttons and form fields—need a
slightly different procedure for selecting text for initialization: You must
double-click on the embedded text item twice, the first time to select the
embedded object, and the second time to select the text inside the object.

Figure 3-34 Editing the Text on an NSMatrix Object

“Creating Matrices of Objects” on page 3-58 describes how to create these
compound objects. Also see “Compound Objects” on page 3-91 for a
conceptual summary of NSMatrix objects and other compound objects.

Sizing Interface Objects

Interface objects in Interface Builder scale to any practical dimension. You can,
for instance, increase the size of a button so it fills a window. Most interface
objects, however, do not scale below a certain minimum size of usefulness.

To size an interface object, do the following:

1. Select an object.

2. Drag a resize handle in the desired direction.

To size an object you must first select it. A selected object has resize
handles—small, gray rectangles—around its perimeter. Drag one of these
handles in the direction you want the object to increase (or decrease) in size.

In NSMatrix objects, double-click on
the text to select the embedded object.

Double-click again to select the text.

3-40 OpenStep Development Tools—September 1996

3

Figure 3-35 Sizing an Interface Object with its Resize Handles

To affect just one dimension of the object, drag a top, bottom or side handle. To
adjust both dimensions simultaneously, drag one of the corner handles. To size
both dimensions proportionally, hold down the Shift key while you drag a
corner resize handle.

You can adjust the size and location of objects precisely by specifying their
origins, width, and height in the Size display of the object's Inspector panel.

See “Positioning and Sizing Precisely" below for details.

Positioning and Sizing Precisely

You can move and resize objects in your interface with numerical exactness
using the Inspectors for those objects. You will occasionally find need for such
exactness, such as when you want to size a custom view to the same
dimensions as the image that it will display. More frequently you will use this
method to align objects or make sure they are the same size.

To position or size an object precisely, do the following:

1. Select an object.

2. Choose the Size Inspector for that object.

3. Modify the object's origin point or its dimensions.

To size and move objects with precision, select a reference object and then
choose the Inspector option from the Tools menu. Choose Size from the pop-up
menu at the top of the Inspector panel. (You can also bring up the Size display
by pressing Command-3.) Note the position and dimensions of the reference
object.

Click on an object to select it, then drag a
resize handle in the direction of growth.

Release the mouse button when
the object reaches the desired size.

Working with Interface Builder 3-41

3

Figure 3-36 Sizing an Interface Object with the Inspector Panel

When you press Return in an origin or dimension field, the object moves to the
new position or expands or contracts to the new size.

Note the size and location of
the reference object.

Select the object you want to
adjust.

Choose the Size display of the
Inspector panel.

Click in an origin (x or y) or
dimension (w or h) field and
modify the value.

3-42 OpenStep Development Tools—September 1996

3

Note – You can also move selected objects incrementally—and precisely—by
pressing the arrow key that points in the required direction. Each incremental
"nudge" moves the object the distance of the grid or, if the grid is turned off,
one pixel.

Duplicating Objects

You can duplicate an object in your application’s interface by doing the
following:

1. Select an object.

2. Copy the object to the pasteboard.

3. Paste the object back to the interface.

4. Position the new object.

To duplicate an object, select it (see Figure 3-37) and then copy and paste it just
as you would with geometric shapes in a drawing application. The copied
object has the dimensions and most other attributes of the original object.

Figure 3-37 Selecting an Object to Duplicate

Choose Copy from the Edit menu, then choose Paste from the Edit menu.

Click on an object
to select it.

Working with Interface Builder 3-43

3

Figure 3-38 The New Object After Duplication

The new object is offset slightly from the original one to help you select it, as
shown in Figure 3-38. Move the new object to its new location.

In addition to the objects that appear on the interface, you can copy your
custom non-UI objects—represented as cubes in the icon mode of the nib file
window—as well as your windows and panels. Just click to select them and
then copy and paste them.

Note – Instead of choosing Copy and Paste from the menu, you can press
Command-c (Copy) and Command-v (Paste).

You can also duplicate groups of selected objects by copying them and then
pasting them. See “Selecting Multiple Objects” on page 3-34 for details on
making multiple selections of objects.

Moving Objects to Other Windows

You can move an object from one window or panel in your application's
interface to another by doing the following:

1. Select one or more objects.

2. Alt-drag the objects to the other window or panel.

To move objects from one window or panel to another, drag them between
windows while holding down the Alt key, as shown in Figure 3-39.

The copy of the object is
slightly offset over the
original object.

3-44 OpenStep Development Tools—September 1996

3

Figure 3-39 Moving an Object to Another Window

If you want to copy rather than move the selected objects (in other words, the
original objects remain in the original location), you have two alternatives:

• Copy the objects using the Copy command; click in the other window or
panel to activate it, and use the Paste command to copy the objects from the
pasteboard.

• Copy and paste the objects in one window, then Alt-drag the duplicated
objects to their new window or panel.

Copying Objects to Other Interfaces

With the same Alt-drag technique, you can copy objects between different nib
files. Simply select a group of objects in one nib file and, while pressing the Alt
key, drag and drop those objects on the appropriate "surface" of the other nib
file.

Both nib files must be open when you initiate the copy operation. You can copy
entire windows or panels as well as custom, non-UI objects between interfaces.

The surface onto which you drop objects must be compatible in the following
ways:

Select an object or
multiple objects. Press
on the Alt key while
dragging the object to
its new window or
panel.

Release the mouse
button when the
object is at the
desired location.

Working with Interface Builder 3-45

3

• Non-UI objects must be dropped over the Instances display of the nib file
window.

• View objects are dropped over a window or panel or over the Instances
display.

• Windows and panels can be dropped anywhere on the screen.

The basic technique of Alt-drag also copies the connections among selected
objects.

Arranging Objects

When you compose your interface, you usually want to arrange the objects in
that interface in some appealingly regular way. You want buttons, for instance,
to be aligned on the same invisible horizontal or vertical line. Or you want the
distance between text fields in a form application to be exactly the same.
Interface Builder gives you a set of tools for arranging objects.

To arrange objects in your application’s interface, do the following:

1. Set the characteristics of the grid in the Alignment panel.

2. Turn on the grid.

3. Align objects with the grid.

Every window or panel has a grid associated with it. You may turn this grid off
and on. When it is on and you move an object, an edge of that object "snaps,"
like a nail to a magnet, to the adjacent intersecting lines of the grid.

Using the Alignment Panel

You set the dimensions of this grid and the edges of alignment in Interface
Builder's Alignment panel, shown in Figure 3-40. To bring up this panel,
choose the Alignment command in the Align menu (the Align menu is a
submenu of the Format menu).

3-46 OpenStep Development Tools—September 1996

3

Figure 3-40 Using the Alignment Panel

The buttons in the Align section of the Alignment panel determine what point
or edge of interface objects snaps to the grid (see Figure 3-41).

Figure 3-41 Using the Radio Buttons in the Alignment Panel

Once you have your grid set up, make sure the grid is turned on: Choose
Format Align Set Grid On. If you also want the grid visible, choose Show
Grid from the same menu.

Now align the objects, either individually or as a group, using the grid, as
shown in Figure 3-42.

Click on a button to set the edges
of alignment for objects.

Move the slider to set the dimensions of the
grid (set to 8 X 8 pixels in this example).

When Right
edges/Top edges
is clicked

When Centers is
clicked.

Working with Interface Builder 3-47

3

Figure 3-42 Aligning Objects Using the Grid

There are other ways to align objects that do not require using the mouse. With
the grid turned off, you can drag view objects from a palette and visually align
them as precisely as possible. Then set the grid spacing, turn the grid on, and
choose the Align To Grid command.

Once the grid is set and on, align the objects, either individually or as a group,
as shown in Figure 3-43.

Figure 3-43 Aligning Objects to the Grid

Dots represent
the intersections
of the grid.

Drag the object
until it snaps into
alignment.

With the grid off, place
objects for alignment and
then select them.

Objects become aligned, in this
case moving to the grid points to
their left.

Choose Format
Align Align To Grid

3-48 OpenStep Development Tools—September 1996

3

With the Align To Grid command, the direction of alignment is toward the
origin point of the window or panel (in other words, toward the lower-left
corner). You should be aware of this when placing objects for later alignment.

Note – You can align selected objects to a grid, singly or as a group, by
pressing the arrow keys in the direction of alignment. When the grid is turned
on, the unit of increment changes from one pixel to whatever the grid spacing
is.

Making Columns and Rows of Objects

It is more efficient to align groups of objects than to align single objects
successively. With the Make Column and Make Row commands, Interface
Builder aligns groups of selected objects to a reference object. You designate
the reference object by the way you select multiple objects:

• If you press the Shift key while clicking on objects in succession, the first
object clicked on is the reference object (see Figure 3-44).

• If you draw a selection rectangle around a group of objects, and so select
objects simultaneously, the topmost object in the selection (usually the most
recently added object) is the reference object.

For most purposes, Shift-clicking on objects is the preferred method because it
permits more control.

Figure 3-44 Making a Column of Objects

Choose Format
Align Make Column

Click on the reference
object first, then Shift-click
on the remaining objects to
select them.

The objects become vertically
aligned to the reference object.

Reference
object

Working with Interface Builder 3-49

3

Removing Objects

To delete an object or objects from your application’s interface, do the
following:

1. Select one or more objects.

2. Choose Cut from the Edit menu.

To delete objects from an interface, select the objects and choose the Cut
command, as shown in Figure 3-45.

Figure 3-45 Deleting a Object from the Interface

You can also delete an object by pressing the Delete key, but the differences
between the Delete key and the Cut command are significant. The Cut
command saves the selected objects to the pasteboard, so you can retrieve the
objects with the Paste command (Command-v). The Delete key permanently
deletes the selected items.

The Coordinate System in Interface Builder

The Size display of an object's Inspector panel shows that object's precise
location and dimensions. The x and y fields hold the origin point (horizontal
and vertical) for the object within the drawing context of its enclosing window
or panel. The w and h fields hold the width and height. All values are in pixels.

Select one or more objects.

Choose Edit Cut.
Command-x is the key
equivalent of this command.

3-50 OpenStep Development Tools—September 1996

3

Within a window or panel, the lower left corner is origin 0,0. This is the point
of reference for objects within that window or panel.

Therefore, when you move or size objects downward or to the left, the values
in the Size display are decremented.

Figure 3-46 illustrates Interface Builder’s coordinate system. The point of
reference for a window or panel (or origin 0,0) is the lower-left corner of the
screen. This means that the same relationship applies: if you decrement its x
value in the Size display, it moves to the left; if you decrement its y value, it
moves toward the bottom of the screen; decrement its w or h values and it
becomes smaller.

Figure 3-46 Interface Builder’s Coordinate System

0.0
340, 300

340, 300

The origins and dimensions of
windows and panels are based
on the screen’s origin point.

0,0

The origins and dimensions of
NSView objects are based on
the origin point of the window
or panel that contains them.

In this example, the window’s
placement is 340, 300 relative
to the screen origin. This
same point on the screen is
the origin for NSViews in the
window, such as the
NSButton object.

Working with Interface Builder 3-51

3

OpenStep's Basic UI Design Philosophy

Composing a user interface involves much more than techniques for placing,
sizing, and arranging objects on a window. When you put your application's
UI together in Interface Builder, keep in mind the following principles.

Make It Consistent

When all applications share the same basic interface, each application benefits.
Consistency makes each application easier to learn, and so increases the
likelihood of acceptance and use. Just as with so many natural "interfaces" in
life, conventions count for a great deal. Although different applications are
designed to accomplish different tasks, they all share, to some degree, a set of
common operations such as selecting, editing, scrolling, and setting options.
Reliable conventions are possible only when these operations are carried out
the same way for all applications.

Make it Feel Natural

Try to make the screen a visual metaphor for the real world, so that the objects
in it reflect the way the represented things actually behave. That is what an
"intuitive" interface is—it behaves as we expect based on our experience with
objects in the real world.

Modeled objects do not have to mimic every detail of their real counterparts,
but they should behave in similar ways. For example, objects in the real world
stay where we put them; they do not disappear and reappear again, unless
someone causes them to do so. Users should immediately recognize the objects
in your interface and should use them for the sorts of operations for which
people typically use their real counterparts.

Put the User in Charge

Users should have the widest freedom of action. If an action makes sense, your
application should allow it. In particular, avoid setting up arbitrary modes,
periods during which only certain actions are permitted. On occasion,
however, modes are a reasonable way of solving a problem, particularly in the
following forms:

• attention panels

3-52 OpenStep Development Tools—September 1996

3

• modal tools

• "spring-loaded" mode (while mouse or key down)

But these modes should be freely chosen, provide an easy way out, be visually
apparent, and keep the user in control.

At the same time, you should try to anticipate what users will do and ease
their way, reducing the actions they must perform. Give them freedom, but still
act on their behalf without waiting for their instructions. These helping actions
should be simple and convenient, like, in the Open panel, preselecting a
directory that is probably in the path of the final selection.

Focus on the Mouse

The mouse is the most appropriate instrument for a graphical interface. The
keyboard is principally used for entering text, but the mouse is the instrument
by which users manipulate the objects of your interface. Your user interface
should support the following three paradigms of mouse action:

• Direct manipulation

• Targeted action

• Modal tool

See User Interface Guidelines for more on action paradigms and much more
information important to the design of your user interface.

Making Interface Objects the Same Size

To lend a look of consistency to your interface, you often want to make similar
objects the same size. Buttons across the bottom of an attention panel, for
instance, should be the same exact size. Interface Builder gives you an easy
way to do this, allowing you resize selected objects to a reference object. You
designate the reference object differently, depending on your method of
selection:

• If you press the Shift key while clicking objects in succession, the first object
clicked is the reference object.

• If you draw a selection rectangle around a group of objects, selecting the
objects simultaneously, the topmost object in the selection (usually the most
recently added object) is the reference object.

Working with Interface Builder 3-53

3

To make one or more objects the same size as a reference object, do the
following:

1. Select the reference object.

2. Add to the same selection the objects that you want resized.

3. Choose the Same Size command.

Making objects the same size involves identifying and selecting a reference
object and selecting several other objects (as shown in Figure 3-47), and
choosing a command.

Figure 3-47 Selecting Several Objects and a Reference Object

Choose Same Size from the Size submenu (you can find the Size submenu on
the Format menu). The objects become the same size as the reference object, as
shown in Figure 3-48.

Select the reference object.

Select the other objects.

3-54 OpenStep Development Tools—September 1996

3

Figure 3-48 The Objects Become the Same Size as the Reference Object

Note – In most situations, you should select multiple objects by Shift-clicking
them because this method gives you more control (you do not always have to
keep track of the topmost object as the reference object).

Shrinking Objects to their Minimum Size

To conserve screen real estate, or to enhance the appearance of your interface,
you might want to have NSView objects just large enough for any text they
contain. You can do this with the Size to Fit command.

To make an object or objects the size needed to accommodate their text
contents, do the following (see Figure 3-49):

1. Select one or more objects.

2. Choose Size to Fit.

The objects become the
same size.

Working with Interface Builder 3-55

3

Figure 3-49 Sizing an NSView Object to Fit the Text It Contains

The Size to Fit command has no affect on matrices, custom views, and some
other objects. If you delete the text from a button, text field, or other object that
holds text, and then apply the Size to Fit command to it, that object shrinks to
its minimum (and probably unusable) size.

Grouping Objects

You can group a set of objects in your application’s interface by doing the
following:

1. Select the objects you want grouped.

2. Choose the Group command.

When you group objects, Interface Builder draws a box around them. The box
has a title (initially "Title"). You select, move, copy, and cut and paste the
objects within the box as a group. Interface Builder gives you two ways to
group objects.

In the first method, you select the objects of the group and choose a menu
command (see Figure 3-50).

Select the object you want
to shrink.

The object shrinks to enclose
the text.

Choose Format
Size Size To Fit

3-56 OpenStep Development Tools—September 1996

3

Figure 3-50 Selecting Objects and Using the Group Command

The default title of the box around the grouped objects is "Title." To change
this, double-click the title to select it (as in the window on the right side of
Figure 3-50). Then type the new name for the grouped objects.

To ungroup the objects, making each object individually selectable again, select
the group and choose Ungroup from the Group submenu.

You can also use the NSBox object in the Views palette to group objects (see
Figure 3-51.

1. First, drag a box onto a window or panel.

2. Then add its contents.

Figure 3-51 Using an NSBox Object to Group Objects

The objects of your group
should be adjacent.

A box encloses the objects.Choose Format
Group Group

Double-click on the NSBox
object. Its resize handles
become truncated.

Drag an object from the palette
and position it within the box. The
black line inside the boundaries of
the box indicates that grouping is
taking place.

Working with Interface Builder 3-57

3

The default title of the NSBox object is "Box." To change this, double-click the
title to select it. Then type the new name. You can change the position of the
title, or eliminate the title altogether, using the NSBox Attributes inspector (see
Figure 3-74).

The Group submenu has two other interesting commands. With the Group in
ScrollView command, you can automatically bind an NSText object (or your
own custom NSView object) to horizontal and vertical scrollbars. With the
Group in SplitView, you can group two related views (often a custom view and
a browser object) in a split view, which has a sizing bar between the views.

See the specifications of the NSScrollView and NSSplitView classes in
OpenStep Programming Reference.

Layering Objects

Every object on a window or panel in Interface Builder is on its own layer. That
is why when you move one object over another object, the first object moves in
front of the second or moves behind it. The most recently added object is
generally on the topmost layer.To change the layering order of an object, do the
following:

1. Select an object.

2. Choose Bring To Front or Send To Back.

Occasionally, you need to alter the layering order to make an object visible or
to have it appear behind other objects. To do this, apply the Bring To Front
command or the Send To Back command (on the Format menu) to selected
objects.

For example, assume you want two buttons to partly overlay a NSScrollView
object, as shown in Figure 3-52.

3-58 OpenStep Development Tools—September 1996

3

Figure 3-52 Layering Buttons in Front of an NSScrollView Object

Creating Matrices of Objects

You can easily transform certain objects in the standard Interface Builder
palettes into matrices of those objects. A matrix (defined by class NSMatrix)
imposes a regular size and intervening distance on a set of identical objects.
Matrices afford an easy way to compose forms, arrays of buttons and sliders,
and multiple-column browsers.

You can create a matrix of objects by doing the following:

1. Drag a suitable object from the Views or TextViews palette.

2. Alt-drag a resize handle of the object.

To create a matrix, drag one of these objects to a window or panel:

• text field

• button

• switch button

• radio button

• form field

• slider (vertical or horizontal)

• browser

Then size the object to the maximum dimension you anticipate for a cell in the
matrix. Next create the matrix, as shown in Figure 3-53.

The buttons are behind the
NSScrollView . To fix this,
select the buttons.

The buttons appear in front of
the NSScrollView .

Choose Format
Bring To Front.

Working with Interface Builder 3-59

3

Figure 3-53 Creating a Matrix of Radio Buttons

Note – You can create a horizontal, vertical, or two-dimensional matrix of text
fields, buttons, or sliders. A matrix of form fields can only be expanded
vertically, adding fields at the bottom of the form.

Note – To make a browser with more than one column, drag a browser object
from the TextFields palette onto your interface; then Alt-drag the right resize
handle until the desired number of columns appear.

While pressing the Alt key, drag a
resize handle in the desired
direction.

Release the mouse
button when the matrix
reaches the desired
dimensions.

3-60 OpenStep Development Tools—September 1996

3

Creating Menus

Menus are just as important as windows and panels for an interface. Menu
commands initiate most of the standard functions of an application, such as
printing, opening files, or cutting and pasting text. That is why Interface
Builder's Menu palette holds a number of ready-made submenus and menu
cells.

To add a menu cell from the Menu palette to your application’s menu, do the
following, as shown in Figure 3-54:

1. Drag a menu cell from the Menu palette.

2. Drop it between two menu cells in your application's menu.

Figure 3-54 Adding a Menu Cell to the Application’s Main Menu

Click on several menu cells in your application's main menu and note how
some cells in the submenus are dimmed. Dimmed cells indicate that, as the
default, the command is inactive until some condition occurs in your code that
causes your application to activate the command.

Choose the Menu palette.

Drag a menu cell from the palette...

...and drop it
between two
menu items.

Working with Interface Builder 3-61

3

Deleting a Menu Cell

You delete a menu cell just as you do with any other object in Interface Builder:
select it, then choose the Cut command from the Edit menu (Command-x) or
press the Delete key.

Changing Titles of Menu Cells

Also, as with other Interface Builder objects that display text, you can easily
change the titles of menu cells by doing the following:

1. Double-click on the text to select it.

2. Type the new title or edit the old one.

3. Click outside the cell to set the new title.

Resequencing Menu Cells and Assigning Command Key
Equivalents

You can also do two special tasks with menu cells: re-sequencing and assigning
Command keys. By re-sequencing, you change the order in which cells are
listed in a menu (see Figure 3-55). By assigning a Command key to a cell, you
give the user of your application a command key equivalent—a shortcut way
to invoke the command (as Command-x is a shortcut for invoking the Edit
menu's Cut command) (see Figure 3-56).

Figure 3-55 Resequencing Menu Cells

Drag the menu cell from its old
location (shown by a black rectangle)
and drop it between two menu cells
(its new location).

3-62 OpenStep Development Tools—September 1996

3

Figure 3-56 Assigning a Command Key Equivalent

Custom Menus

In addition to the standard menu commands and submenus, Interface Builder
makes it easy for you to compose your own custom menus. Use the Submenu
cell in the Menu palette to create custom submenus (see Figure 3-57) and use
the Item cell for custom menu commands. The Print command is frequently
added as a custom cell.

Figure 3-57 Using the Submenu Cell to Create a Custom Submenu

Double-click on the menu cell near
its right edge. In the square, type
the letter for the Command key
equivalent.

Make sure that the Command key
letter is not assigned to some other
command in your application.

Choose the Menu palette.

Drag the
Submenu cell
from the palette...

...and drop it
between two
menu cells in the
application’s
main menu.

Working with Interface Builder 3-63

3

To create a custom submenu, do the following:

1. Change the title of Submenu and click on the cell to expand it.

2. Then add Item cells from the Menu palette to the new submenu and
change their titles.

You can make menu cells active or inactive by default. Select the cell and set
the Disabled button in the Attributes display of the cell's Inspector. See
“Setting Object Attributes" for more information on using the Inspector panel.

See “Making and Managing Connections” on page 3-109 tolls with the objects
that are to handle menu commands.

Setting Object Attributes
All objects on Interface Builder's standard palettes have attributes that you can
initialize through the Inspector panel. This section describes many of those
attributes, especially the effect they have on appearance and behavior.

The Attributes display of the Inspector panel lets you set the selected object’s
basic characteristics. For example, Figure 3-58 shows the Attributes display of
the NSButton Inspector.

3-64 OpenStep Development Tools—September 1996

3

Figure 3-58 Attributes Display of NSButton Inspector

Conceptually, each of the characteristics in the Attributes display corresponds
to an Objective C message to which the selected object responds. For example,
Table 3-1 on page 3-65 shows the correspondence between some of the
attributes displayed in the illustration above and messages that an NSButton
object understands.

Working with Interface Builder 3-65

3

The Attributes displays for the selected OpenStep classes are discussed in the
following sections. If you have questions about any of the attributes displayed
for a selected object, consult the class specification for that object in OpenStep
Programming Referencet.

The Attributes display for the File’s Owner, for Custom NSViews , and for
custom objects that you instantiate in the nib file window lets you set the class
of these objects.

Examining an Object’s Attributes

You can examine the attributes of any object, whether that object is a graphical
object such as a button or panel, or a non-UI object in the Instances display. To
examine an object’s attributes, do the following:

1. Select an object in the interface.

2. Choose Inspector from the Tools menu.

Note – You can also bring up the Attributes display of the Inspector panel by
pressing Command-1.

The attributes for the selected object are then displayed in the Inspector panel.

Table 3-1 Object Attributes and Messages

Attribute Message

Title setTitle:

Alt. Title setAlternateTitle:

Icon setImage:

Alt. Icon setAlternateImage:

Sound setSound:

Type setType:

Icon Position setImagePosition:

3-66 OpenStep Development Tools—September 1996

3

Once the Inspector panel is visible on the screen, it stays there until you close
it. As you select different objects, their attributes are displayed (or dimensions
or connections or help links—whatever Inspector display is current).

You can also select objects in the Instances display and examine their
attributes. Some of these objects (like First Responder) have no attributes.
Others, like an instance of a custom class, have only one attribute.

Click on an object in the Instances display to select it, as shown in Figure 3-59.

Figure 3-59 Selecting an Object in the Instances Display

 If the Inspector panel is not visible, choose Tools Inspector or press Command-
1. As before, the attributes for the selected object are displayed (see
Figure 3-60).

Select an object.
In this case, the
object is an
instance of a
custom class.

Working with Interface Builder 3-67

3

Figure 3-60 Attributes Display for a Custom Class

Customizing Windows and Panels

You can customize windows and panels in the following ways:

• Set the window title.

• Determine how the Window Server buffers window contents.

• Choose the window's controls.

• Set the window's options.

A single Attributes display of the Inspector panel serves for both windows and
panels, as shown in Figure 3-61.

3-68 OpenStep Development Tools—September 1996

3

Figure 3-61 Attributes Display for Windows and Panels

Window Backing

When a window is partially covered by another window and then is re-
exposed, its backing—its type of backup buffer—determines how the system
re-draws the exposed part.

• Nonretained: The application is responsible for all drawing on the screen
because there is no buffer. If the application does not do anything when the
window is uncovered, the re-exposed part is replaced by the background
color. Nonretained windows are appropriate for transitory images that you
do not need to save.

Change the window’s
title (what is displayed
in the window’s title
bar)

Control when and
how the window is
created and freed.

Here, if you need to,
change the class to
NSWindow, NSPanel ,
or a custom subclass
of NSWindow or
NSPanel .

Choose the controls
for the window.

.

Choose the
window’s
backing (the way
its contents are
buffered.

Working with Interface Builder 3-69

3

• Retained: Pixels are copied to the buffer for all covered parts of the window.
When an obscured part of the window is later revealed, only that part of the
window is redrawn—using the contents of the buffer—the rest of the
window is not redrawn. A retained window is the appropriate choice for
most situations.

• Buffered: The window is drawn first in the buffer and then copied to the
screen. When an obscured part of the window is revealed, the entire
window is refreshed using the buffer. A buffered window is appropriate
when you do not want users watching complicated images being rendered
on-screen. It is also the best choice for animation or for redrawing lines of
rapidly typed text.

Changing Class and Custom Windows

In the Class section of the Attributes display, you can change the class of a
window to NSWindow, NSPanel , or any custom subclass of NSWindow.

Window Controls

You can choose that the window or panel have any of the three controls shown
in Figure 3-62.

.

Figure 3-62 Window Controls

Miniaturize button Close button

Resize bar

3-70 OpenStep Development Tools—September 1996

3

Window Options

You can select any of the window options listed in Table 3-2.

What is the Difference Between a Window and a Panel?

A panel is a window that serves an auxiliary function within an application.
Because it is intended for a supporting role, a panel typically has these
features:

• A panel can be the key window, but never the main window.

• When the application is deactivated, the panel moves off-screen (it is
removed from the screen list). When the application is reactivated, the panel
is displayed again.

• When a panel is closed, it moves off-screen; it is not destroyed.

• Unlike a window, a panel forwards Command key-down events (like
carriage returns) to its views.

• When instantiated programmatically, panels have a grey background by
default, while programmatically created windows have a white background.

Table 3-2 Window Options

Option Description

Free when closed The window is to be freed when it is closed.

Hide on deactivate The window should disappear when the application is
deactivated.

Visible at launch time The window should appear when the application is
launched.

Deferred A window device for this object is deferred until it is placed
on-screen.

One shot The window device is freed when the window is removed
from the screen.

Dynamic depth limit The window's depth limit can change to match the depth of
the screen.

Wants to be color The window is displayed on a color screen (two-monitor
system only).

Working with Interface Builder 3-71

3

Also, a panel usually has fewer controls: sometimes only a close button; rarely
a resize bar; and sometimes no controls at all.

You can make some panels exhibit the following types of special behavior for
specialized roles:

• A panel can be precluded from becoming the key window until the user
makes a selection in it.

• Some panels (for example, palettes) can float above windows and other
panels.

• You can have a panel receive mouse and keyboard events while an attention
panel is on-screen. Actions within the panel can thus affect the attention
panel.

Setting Button Attributes

The Attributes display for buttons enables you to set a button's type, title, icon,
alternate title and icon, and various other characteristics. The object labeled
Button on the Views palette is only one style of button (albeit the most
common style). The palette also holds radio buttons and switch buttons. Using
the Attributes display for buttons (see Figure 3-63), you can customize any
palette button, making it something that is uniquely suitable for a particular
circumstance.

3-72 OpenStep Development Tools—September 1996

3

Figure 3-63 NSButton Attributes Display

The Anatomy of a Button

A button is essentially a two-state NSControl object. When a user clicks on a
button, an action message is sent to a target object. It is two-state because it is
either on or off, and when it is on, it typically sends its action message. For a
button, the states are also known as "normal" (off) and "alternate" (on).

You can set a button's attributes so that the normal and alternate states show
different images, or so that in the alternate state the button is highlighted. You
can configure a button to send its message continuously rather than discretely.
You can associate a command key-equivalent with a button.

The command key
equivalent to clicking
on the button.

The button’s main
and alternate title

The button’s main
and alternate icons

Aligns the text within
the button
boundaries.

Holds an integer
that you can use to
identify the button.

Sets the type of
button.

Options that
control the
button’s
appearance
and state.

Working with Interface Builder 3-73

3

A button is actually a compound object: a NSButton object and a
NSButtonCell object. Because they inherit from NSActionCell ,
NSButtonCells hold the target outlet and the action message to be sent to it.
By being an NSCell subclass, they also carry the state value of a button.
NSButtonCells also draw the text and image of a button.

Most of NSButton 's methods match identically declared methods in
NSButtonCell . Aside from dispatching the action message, NSButton 's
unique role is to set the font of the key equivalent, and to manage the
highlighting or depiction of the NSButton 's current state.

The Icon Position and Pixels Inset controls as well as the Sound and Icon fields
are described in detail in “Associating Sounds and Images with Buttons” on
page 3-75. For more information on the Tag field, see “Using Tags” on
page 3-107.

You might think of storing specially configured buttons on a dynamic palette.
See “Adding Custom Palettes, Inspectors, and Editors” on page 3-169.

Titles and Icons

The text in the Title field is what is displayed in most buttons; this is the text
you can select by double-clicking inside the button. The name in Icon identifies
an image stored in the nib file (Images display of the nib file window) that is
displayed within the button. The alternate title (Alt. Text) and the alternate
icon (Alt. Icon) appear when the user clicks on a button of type Momentary
Change or Toggle.

Key Equivalent

The Key field identifies a keyboard alternative to clicking the button. Possible
values are: \b (Backspace), \d (Delete), \e (Escape), \t (Tab), and \r (Return).

3-74 OpenStep Development Tools—September 1996

3

Button Type

A button can be of any of the types listed in Table 3-3.

Button Options

You can select any of the button options listed in Table 3-4.

Table 3-3 Button Types

Type Button Behavior When Clicked

Momentary Push Button is highlighted, appears to be pressed.

Momentary Change Alternate button title and icon appear (as long as mouse
button held down).

Momentary Light Button is highlighted, but no illusion of being pressed.

Push On/Push Off Click once and button is highlighted with illusion of being
pushed in; click again and it returns to normal.

On/Off Click once and button is highlighted; click again and it
returns to normal.

Toggle Alternate button title and icon appear; click again for main
title and icon.

Table 3-4 Button Options

Option Description

Bordered A line is drawn around the button's border.

Transparent The button has no border, text, icon, or background color.

Continuous The button sends its action message continuously when
pressed.

Disabled Prevents activation of the button; text is in gray.

Selected The button, when initialized, is to be selected (switch and radio
buttons).

Working with Interface Builder 3-75

3

Associating Sounds and Images with Buttons

To associate a sound or image with a button, do one of the following:

• Drag the icon representing a sound or image from the nib file window (see
Figure 3-64) or the Workspace (see Figure 3-65 on page 3-76) and drop it
over a button.

• Enter the file name of the sound or image in the appropriate field of the
button's Attribute's display.

You associate a sound or image with a button by dragging the icon
representing the resource and dropping it over the button.

Figure 3-64 Associating an Image with a Button

Drag a sound or image
icon from the appropriate
display in the nib file
window...

... and drop it over
the button.

3-76 OpenStep Development Tools—September 1996

3

When you click on a button that has a sound associated with it, it plays the
sound. Images appear in buttons with or without text. They can play more
than an iconic or decorative role; when you drag the NSReturnSign image
onto a button, for instance, the carriage return key-equivalent is associated
with the button ("\r" in the Key field).

You can drag sounds and images from the Workspace Manager's File Viewer
too, as shown in Figure 3-65.

Figure 3-65 Associating a Sound with a Button

The sound or image automatically is added to the Sound or Image section of
the nib file window.

Several fields and controls in the Inspector's Attributes display for buttons
relate to images and sounds (see Figure 3-66 on page 3-77).

Drag a sound or
image icon from the
File Viewer ...

... and drop it
over the button.

Working with Interface Builder 3-77

3

Figure 3-66 NSButton Attributes that Relate to Sounds or Images

Note that the name of a sound or image in this display is the file name
(blat.snd and NSReturnsign.tiff , for example) minus the extension.
Instead of dragging and dropping sound and image icons, you can type their
file names (minus the extension) in the appropriate field. However, you should
insert the resource into the nib file or the project before typing its name in the
Attributes display.

Note – For most situations, the recommended course of action is to add sounds
and images to your project. If you add resources only to a nib file, those
resources might not be available to an application unless the nib file has been
loaded.

The button’s main
and alternate icons

The name of the sound
file played when the
button is clicked on

Positions the button’s
title and icon relative to
one another.

Adjusts the icon’s
distance from the button
boundary.

3-78 OpenStep Development Tools—September 1996

3

The six buttons in the Icon Position group position the button title and icon
relative to each other. Thus you can have the title above, below, to the left, or to
the right of the icon, or show only the title, or show only the icon. The Pixels
Inset pull-down menu gives several pixel distances for adjusting the spacing
between the icon and the nearest edge of the button.

Note – If you want to import images into your interface for decorative
purposes, drop the image on a button (if smaller than the image, the button
will resize to contain it). Position the button, then deselect the Bordered option
and select the Transparent and Disabled options.

Managing Sounds and Images

You can manage sounds and images in your interface in the following ways:

• Add an image or file by dragging the file icon representing the resource
from the File Viewer and dropping it over the nib file window.

• Examine the sound or image in the Inspector's Attributes display.

As shown in “Associating Sounds and Images with Buttons” on page 3-75, you
can add sounds and images to a nib file as a side effect of associating those
resources with a button. You can also insert sounds and images into a nib file
by dragging them from the File Viewer and dropping them over the nib file
window, as shown in Figure 3-67.

Working with Interface Builder 3-79

3

Figure 3-67 Adding a Sound or Image to a Nib File

You can drop a sound or image over the nib file window no matter what
display is showing. The sound or image file will be correctly added to the
appropriate display.

Although the association of sounds and images with buttons is an important
reason for putting them into a nib file, there are other reasons. When you play
a sound or composite an image in your code, the search path (if you supply no
path) starts with the application's executable (already loaded resources), the
main bundle, and the main bundle's .lproj directories. Then the following
paths are searched:

• the appropriate subdirectory of the user's ~/openstep/Library directory

• the appropriate directory in /usr/local/openstep /Library

• the Application Kit

Drag the sound or
image icon from the
File Viewer ...

... and drop
it over the
nib file
window.

3-80 OpenStep Development Tools—September 1996

3

If you do not want to risk a sound or image not being in one of these standard
directories, then you should store it in the a nib file or in the project.

Sounds and images have their own Attributes displays. If the Inspector panel
is not visible, access it as you do for palette objects: choose the Inspector
command from the Tools menu or press Command-1.

Figure 3-68 explains the Attributes display for sounds.

Figure 3-68 Inspecting Sound Attributes

If your system has a microphone or some other input source connected, you
can record new sounds. Click on OK to save new sounds.

For images, the Attributes display (see Figure 3-69) is mostly useful for images
that are too large to show in the Images display of the nib file window.

Select a sound and
then select the
Attributes display to
see the sound’s
waveform. You can
cut, copy, and paste
the waveform.

Controls to record and
play sound. Above the
controls is a horizontal
sound meter.

Click to get back to the
original sound.

Working with Interface Builder 3-81

3

Figure 3-69 Inspecting Image Attributes

Customizing Titles, Text Fields, and Scroll Views

For NSTitles , NSTextFields , and NSScrollViews , you can set background
and text color, text alignment, border style, tag, and options affecting access to
text.

OpenStep gives you several ways to display, format, and control access to text.
The Attributes displays for NSTitles , NSTextFields , and NSScrollViews
have controls for initializing those objects with various characteristics. A title is
a specially configured text field: non-selectable with transparent backgrounds
and no borders.

To see what certain effects look like, drag an NSTextField onto a window
and click on the buttons on the display shown in Figure 3-70 on page 3-82.

The image itself,
scaled if necessary.

The dimensions of the
image, in pixels.

3-82 OpenStep Development Tools—September 1996

3

Figure 3-70 Setting NSTextField Attributes

An NSScrollView object is a compound object consisting of one or two
NSScroller objects and a NSClipView object, which has as its document
view (subview) an NSText object in Interface Builder. The document view is
what is scrolled. The NSScrollView object has a slightly different Attributes
display (see Figure 3-71): no text alignment buttons and a different set of
options, which are listed in Table 3-5.

Color of the
bounding rectangle
behind the text

Color of the text

Alignment of the
text within the
bounding rectangle

No border, black
border, 3-D border

An internal identifier
of the NSTextField or
NSScrollView

Options affecting
user operations on
the text (see
Table 3-5)

Working with Interface Builder 3-83

3

Figure 3-71 Setting NSScrollView Attributes

Table 3-5 Title, Text Field, and Scroller Options

Option Description

Editable Set to permit the user to edit text.

Selectable Set to permit the user to select text.

Scrollable Set to enable typing beyond the borders of the field (text
scrolls to the left—NSTextField only).

Multiple fonts allowed Set to put text in RTF format. (NSScrollView only).

Graphics allowed Set to put text in RTFD format (graphics can be
inserted—NSScrollView only).

Background color

Text color

Border style

Text access options (see Table 3-5)

3-84 OpenStep Development Tools—September 1996

3

Note – A tag is an internal identifier of an object that you can use in your code.
See “Using Tags” on page 3-107 for more information.

Note – For more information on the NSTextField , NSScrollView ,
NSScroller , NSText , and NSClipView classes, see the appropriate
specification in OpenStep Programming Reference.

Setting Textual Attributes

You can set the following textual attributes:

• The font characteristics of selected text

• The alignment of selected text within its boundaries

NSTextFields and NSScrollViews (with NSText objects as document
views) are not the only palette objects that can contain text. Almost all palette
objects—from buttons to browsers—can display text. You can set the font and
alignment attributes of this text as shown in Figure 3-72.

Figure 3-72 Setting the Attributes of Text

Select the text.

Click to
display the
font panel.

Click to
display the
Text
submenu.

Working with Interface Builder 3-85

3

The Text submenu of the Format menu also has commands that affect selected
text; it offers options for aligning text and for displaying, copying, and pasting
the ruler in an NSText object. With rulers you can set tabs and indentation.
Note that rulers can only appear in NSText objects (for instance, inside a scroll
view).

If you choose Font Panel from the menu (or press Command-t), the Font Panel
(shown in Figure 3-73) is displayed.

Figure 3-73 Font Panel

You can use the standard menus for setting font and alignment attributes for
any text in your interface. See Using the OpenStep Desktop and online help for
complete information.

Setting Box (Group) Attributes

You can set title position, border style, and horizontal and vertical offsets for
an NSBox object.

3-86 OpenStep Development Tools—September 1996

3

When you group a selection of objects, a box encloses that object. The box
(actually the box's content view) becomes the superview of the enclosed
objects. If you select the box in Interface Builder, you can move, copy, paste,
and delete the group of objects as one.

The box has several attributes that you can set, as shown in Figure 3-74.

Figure 3-74 Setting NSBox Attributes

You can also create a box object in your interface by dragging the NSBox object
from the Views palette. To group objects within this box, double-click on the
box when it is on the interface. Then drag objects from a palette and drop them
within the box. Double-click on the box again when you are finished.

You can drag a box onto your interface and then programmatically replace its
content view (blank by default) with another NSView object, or
programmatically add subviews to the content view. You can also manipulate
this box to make decorative rectangles and lines.

Sets the location of the title in relation
to the box, or removes the title.

Sets the border style of the box.

Adjusts the distance, in pixels, between
the enclosed objects and the top and
bottom edges of the box.

Adjusts the distance, in pixels, between
the enclosed objects and the left and
right edges of the box.

Working with Interface Builder 3-87

3

Note – To make a line in an interface, such as a divider line between sections of
a panel, drag a box onto the interface, Then switch off the title and make the
box as narrow as possible in the required dimension (vertically or
horizontally). Finally, set the offset (vertical or horizontal, whichever is
applicable) to zero.

Customizing Browsers

You can select the browsing controls (see Figure 3-75) and browser options (see
Table 3-6) for NSBrowser objects.

Browsers display lists of data and allow users to select items from the list. They
can hold one-dimensional lists or hierarchically organized lists of data such as
directory paths. Browsers display these hierarchical levels in columns, which
users can navigate using buttons or scrollers. An entry in a column can be
either a leaf node or a branch node. Leaf nodes terminate a path; branch nodes,
which have a right-arrow icon, lead into the next level in the hierarchy.

Browsers have attributes affecting their navigation controls, methods of
selection, and appearance, as shown in Figure 3-75.

3-88 OpenStep Development Tools—September 1996

3

Figure 3-75 Setting NSBrowser Attributes

The Horizontal Scrolling buttons determine whether the browser uses a
scroller for navigating levels. Click on these radio buttons to see what the
scrolling controls look like.

A browser automatically uses a scroller for vertical navigation of lists.

Table 3-6 Browser Options

Option Description

Allow multiple selection Permits the selection of more than one node at a time.

Allow empty selection Makes it possible to have no cells selected; otherwise, first
cell in column is selected by default.

Select whether or not the browser uses
a scroller for horizontal navigation.

Select options for the browser.

Working with Interface Builder 3-89

3

Setting Attributes of Menu Cells and Pop-up Buttons

You can set whether the list is a pop-up or pull-down type (not applicable to
menu cells). You can set whether the cell is initially disabled. And you can
assign a tag to the cell.

Menus, pop-up lists, and pull-down lists are compound objects that contain
NSMenuCell objects. The Attributes displays for menu cells and pop-up/pull-
down lists are almost identical. Figure 3-76 shows the display for pop-up/pull-
down lists.

Allow branch selection Permits the selection of branch nodes (such as directories).

Separate columns Separate columns by a bezeled bar (if not set, a black line
is displayed).

Display titles Titles are above columns and column divider is bezeled
bar.

Table 3-6 Browser Options

Option Description

3-90 OpenStep Development Tools—September 1996

3

Figure 3-76 Setting NSPopUpButton Attributes

If you disable a menu cell in Interface Builder, its text is gray when the
application is launched. When the user clicks the cell, no action message is
sent. If conditions change to make the cell's function relevant, your code must
re-enable the cell.

Pop-Up Lists and Pull-Down Lists

The object Item1 on Interface Builder's Views palette is actually a trigger
button (see Figure 3-77) whose target is an NSPopUpButton object. When you
double-click on the trigger button on your interface, three menu cells appear;
you can initialize their titles or (in the Attributes display) disable them and
assign them tags. In a running application, the NSPopUpButton object, once
triggered, tracks the mouse until the user releases it, at which time it sends the
selected action message to its target and disappears.

Sets whether the list behaves as a
pop-up list or a pull-down list.

Sets whether the pop-up button or
menu cell is initially deactivated (text
grayed out).

Enter an internal identifier of the pop-up
button or menu cell.

Working with Interface Builder 3-91

3

Figure 3-77 Pop-up List’s Trigger Button and Menu Cells

A pop-up list's trigger button always displays the item that was last selected.

In a pull-down list the trigger button's title is fixed. This type of list is effective
for selecting actions in a very specific context, like the Operations pull-down
list in Interface Builder's Classes display.

Note – Once you expose a pop-up list’s menu cells, you can add more menu
cells to it from the Menus palette (see “Creating Menus” on page 3-60).

Note – A tag is an internal identifier of an object that you can use in your code.
See “Using Tags” on page 3-107 for more information.

Compound Objects

Most of the objects you can drag from the standard Interface Builder palettes
are actually compound objects. They consist of two or more objects that work
together in specific ways.

NSControl and NSActionCell

An NSControl (an instance of an NSControl subclass) functions as an event
translator. It translates a user event like a mouse click into a action message
and directs that message to another object in the application (the target).

NSControls supply the mechanism but not the content of the target/action
paradigm. They need NSActionCell objects (or instances of NSActionCell
subclasses) to hold this information:

• target - the object receiving the action message

• action - the method that specifies what the target is to do

Trigger button
(when unactivated)

Menu cells
(when activated)

3-92 OpenStep Development Tools—September 1996

3

At least one of these cells occupies the same area as its NSControl . Because it
descends from NSCell , a cell also has content (text or image), which it draws
upon request from its NSControl .

This division of responsibility makes for greater efficiency. This is especially
true because an NSControl can have multiple cells and send a different action
message to a different target for each of those NSCells . Since NSCells are
lightweight objects, it is more efficient in some contexts to associate one
NSControl with many NSCells .

Matrices

Instances of NSButton , NSSlider , and NSTextField are NSControl objects
each of which are bound to a single NSCell . An NSMatrix (an instance of the
NSMatrix class) is also an NSControl , but it manages more than one NSCell .
It organizes its NSCells in rows and columns. The NSCells must be of the
same size and usually are of the same class (although an NSMatrix can have
instances of different subclasses of the NSCell class).

An NSMatrix allows each of its NSCells to have its own action and target.
An NSMatrix also has its own action and target. If an NSCell does not have
an action, the NSMatrix sends its own action to its own target. If an NSCell
does not have a target, the NSMatrix sends the NSCell 's action to its own
target.

In Interface Builder you can convert a single-celled NSControl object into a
NSMatrix by Alt-dragging a resize handle of that NSControl . The associated
NSCell object, whether it is an NSButtonCell , NSSliderCell , or
NSTextFieldCell , is duplicated for each row and column of the NSMatrix .

NSForms are a special type of matrix (NSForm inherits from NSMatrix). They
have special NSCells (instances of NSFormCell) that compose both the form
entry fields and the titles of those fields. An NSMenu, though actually a
descendent of NSWindow, depends for its behavior on the NSMatrix object in
its content area, which is filled with NSMenuCells .

Working with Interface Builder 3-93

3

Special Compound Objects

Some objects on Interface Builder's standard palettes are of a more complex
composition.

NSScrollView

The NSScrollView object (see Figure 3-78) coordinates the interaction
between NSScroller objects and an NSClipView object to scroll a document.
It consists of one or two NSScrollers , an NSClipView object, and the
document view, which is generally an NSText object.

Figure 3-78 NSScrollView

NSBrowser

The NSBrowser object (see Figure 3-79) has scroll bars or buttons for controls,
and columns to show hierarchically organized data. Each column is a
NSMatrix of NSBrowserCell objects.

NSScroll NSText
(document view)

NSClipView
(content view)

3-94 OpenStep Development Tools—September 1996

3

Figure 3-79 NSBrowser

NSPopUpButton

The NSPopUpButton object (see Figure 3-80) has different manifestations,
depending on state. When not activated, it presents a button or button cell.
When the user clicks on this trigger button, an NSMatrix of NSMenuCell
objects is displayed.

Figure 3-80 NSPopUpButton

NSScroller NSBrowserCell

NSMatrix

Trigger buttonNSMenuCell

NSMatrix

Working with Interface Builder 3-95

3

Setting Matrix Attributes

The Attributes display for matrices, shown in Figure 3-81, allows you to
determine how a matrix and its cells look and behave.

Figure 3-81 Setting NSMatrix Attributes

Matrix Selection Mode

You can set one of four selection modes to specify how cells behave when a
user is dragging a mouse within a matrix. These modes also determine if
selections in a matrix—a column of switch buttons, for example—are exclusive
(only one allowed) or inclusive (multiple selections allowed).

Draws the
background cells
of the matrix.

Shows what the
prototype cell
looks like.

Determines how cells
track the mouse and
whether selections
are exclusive or
inclusive.

Lets you inspect the
prototype for the
selected matrix’s
cells and change it,
if necessary.

Various options
affecting the
cells of the
matrix (see
Table 3-7) An internal identifier

of the matrix

3-96 OpenStep Development Tools—September 1996

3

• Track: The cells track the mouse when it is within their bounds but do not
highlight themselves. This mode would be suitable for a "graphic equalizer"
matrix of sliders. Moving the mouse around causes the sliders to move
under the mouse.

• Radio: Only one cell in the matrix can be selected at a time, as is the typical
case with a matrix of radio buttons.

• Highlight: Each cell is highlighted while it tracks the mouse, then is
unhighlighted when it is done tracking. This mode allows multiple
selections within a matrix. A matrix of switch buttons commonly has this
mode.

• List: Cells are highlighted as the mouse is dragged across them, but they do
not track the mouse. In this mode, a matrix supports multiple selection,
enabling a user, for instance, to select a range of text.

Cell Prototype

When an NSMatrix object creates its cells, it typically makes them by copying
a prototype cell stored as an instance variable. (It can also instantiate its cells
from the cell's class.)

You can examine and alter the attributes of this prototype cell through the
Attributes display. Click on the Inspect button to see the cell-prototype
inspector shown in Figure 3-82.

Working with Interface Builder 3-97

3

Figure 3-82 Cell Prototype Inspector

If you change the prototype, be sure to apply the changes to existing matrices
by selecting them, bringing up the Attributes display, and clicking on the
Match Prototype button.

Set the attributes of
the prototype.

When finished, click here.

3-98 OpenStep Development Tools—September 1996

3

Note – A tag is an internal identifier of an object that you can use in your code.
See “Using Tags” on page 3-107 for more information.

Automatically Resizing Objects

When you resize a window, the View objects in the window must often adjust
their size or the distances between themselves and other objects. The Size
display of the Inspector panel, shown in Figure 3-83, lets you tell a selected
object how to resize itself. To set the resizing behavior of an object, do the
following:

1. Select an object.

2. Choose the Size display of the Inspector panel.

3. In the Autosizing view of the display, click on lines to make them springs
or click on springs to make them lines.

Table 3-7 Cells Options

Option Description

Autosize If set, the cells resize themselves whenever the matrix is
resized, keeping the space between cells constant. If not
selected, the space between cells changes.

Selection by rect Set to allow users to select entire rows or columns of cells by
dragging the mouse.

Set Return Sign Click to have the carriage-return equivalent set in the last
button cell of a matrix. This cell has both the carriage-return
icon and control key associated with it.

Match Prototype If you have changed the cell prototype, click on this button to
apply the new prototype to the selected matrix.

Tags = Position Click on this button to resequence the tags of the cells. When
you create a matrix in Interface Builder, cells are assigned tag
integers starting from zero. For two dimensional matrices, the
progression is from left to right (row), then down column). If
you later add new cells to a matrix by Alt-dragging it to the
right or down, the new cells have tag numbers of zero.

Working with Interface Builder 3-99

3

Figure 3-83 Size Inspector

The lines inside and outside the box affect different aspects of resizing
behavior, as shown in Figure 3-84.

Choose Size from the pop-up menu.

Click to toggle between a line and
a spring, setting the resizing
behavior (see Figure 3-84).

3-100 OpenStep Development Tools—September 1996

3

Figure 3-84 Effects of Lines Inside and Outside the Autosizing Box

Note – For examples of the effects of these autosizing characteristics on views
within a resized window, see “Some Effects of Automatic Resizing” on
page 3-102.

If you do not make a view resize itself when its superview or window resizes,
some ugly behavior could result. For instance, if the user makes a window
small, objects that do not resize themselves could become truncated by the
resized window's borders.

One recourse to this unwanted outcome is to specify a minimum size for the
window, as shown in Figure 3-85.

Inside the box
The spring inside the box indicates that when the
window or superview is resized vertically, the
object resizes itself to maintain its distance from
the top and bottom edges of the window or
superview.

The straight line inside the box indicates that
when the window or superview is resized
horizontally, the object keeps the height at which
it was initialized.

Outside the box
The spring outside the box indicates that when the
window or superview is resized vertically, the
space between the top edge of the object and the
enclosing view or window is adjusted
proportionally.

The straight line outside the box indicates that
when the window or superview is resized, the
object maintains the initialized distance between
its right edge and the enclosing view or window
edge.

Working with Interface Builder 3-101

3

Figure 3-85 Specifying a Minimum Size for a Window

You might need to make several iterations in Interface Builder—setting
resizing characteristics in objects and shrinking the window in test mode—to
determine what the ideal minimum size should be.

When There Are Conflicts

You can create an impossible resizing relationship, such as specifying as fixed
the object's dimensions and its distance from the window's edges. In cases of
conflict, an object's fixed dimension takes precedence over its fixed distance
from a border. If all dimensions are made resizable, adjustments to the window
or superview's changed dimensions are made equally to the object and its
distance from a border.

Enter the minimum width and height of
the window. Resizing will stop at these
dimensions.

Or click to make the window’s current
dimensions the minimum size.

Set all springs to have the window
proportionally positioned on a screen of a
different size. Unset a spring to have the
widow maintain the absolute distance to
the screen edge.

3-102 OpenStep Development Tools—September 1996

3

Note – Interface Builder includes a test mode that simulates the actual
operation of the inteface. In test mode, you can test the resizing behavior of
your windows and views, see how connected objects communicate, play
sounds associated with buttons, and do similar operations. Test mode does not
test your custom objects or the connections custom objects have with the
standard palette objects. See “Testing the Interface” on page 3-136 for more
information.

Some Effects of Automatic Resizing

The window in Figure 3-86 has two identical scroll view objects. Different
autosizing springs are set in each, and then the window is resized in test mode.
Figure 3-87 and Figure 3-88 show you the results.

Figure 3-86 Resizing Example

In Figure 3-87, one object resizes vertically while the other does not (distances
to borders are absolute for both). The result: the object that does not resize
itself is truncated when the window is vertically shortened.

OBJECT A OBJECT B

Working with Interface Builder 3-103

3

Figure 3-87 Object A Resizes, Object B Does Not

In Figure 3-88, both objects resize themselves, but Object B maintains its
distance to surrounding objects. This causes Object B to be more severely
resized than Object A.

Figure 3-88 Both Object A and Object B Resize

To learn more about the effects of resizing, try some experiments on your own
using different combinations of objects and autosizing attributes.

Object A Size Inspector Object B Size Inspector

Objects After Resizing

OBJECT A

Object A Size Inspector Object B Size Inspector

Objects After Resizing

OBJECT A OBJ
ECT
B

3-104 OpenStep Development Tools—September 1996

3

Automatic Resizing: An Example

The example interface shown in Figure 3-89 incorporates autosizing attributes
in such a combination that the window can shrink to a very small size and still
be usable.

Figure 3-89 Original and Resized Windows

The window's minimum size is set to a dimension just large enough for the
main view to show content and for the slider and button to be manipulated
(see Figure 3-90).

Working with Interface Builder 3-105

3

Figure 3-90 Minimum Size Set for Window

The resizing behavior set for the box containing the slider (see Figure 3-91)
ensures that the box keeps the same distance from the window's adjacent
edges, but resizes the gaps between itself and the other views. It resizes itself
horizontally, but not vertically.

Figure 3-91 Autosizing Behavior Set for Box

3-106 OpenStep Development Tools—September 1996

3

The button's autosizing attributes (see Figure 3-92) complement the box's
attributes. It keeps the same distance from the window's adjacent edges, but
resizes all other distances. It also resizes itself horizontally, but not vertically.

Figure 3-92 Autosizing Behavior Set for Button

The main view of the interface (a custom view) maintains a constant distance
from the window's edges, but is itself resizable in all directions (see
Figure 3-93).

Figure 3-93 Autosizing Behavior Set for Custom View

Working with Interface Builder 3-107

3

Using Tags

Tags are integers that you use in your code to identify objects. They offer a
convenient alternative to such methods of object identification as fetching an
object's title. (What if the object't title changes while the application is running,
or the object has no title?) Tag integers can also carry useful information
associated with an object, and thus make it easier to integrate that information
into a program. Tags are commonly assigned to matrices and to the cells
contained by matrices.

You can specify tag integers in the Tag fields of most Attributes displays, as
shown in Figure 3-94. To use tag integers for objects in your interface, do the
following:

1. In Interface Builder, specify the tag integers for objects.

2. If the integers are not intrinsically meaningful, define constants for them
in your source code.

3. Send the tag message to a tagged object to get the integer.

4. Evaluate the integer and act upon it.

3-108 OpenStep Development Tools—September 1996

3

Figure 3-94 Specifying a Tag Integer for an Object

You can also set tag integers programmatically in most NSView objects by
sending those objects the setTag: message.

The integers that you assign could have some intrinsic value; for instance, they
could be numbers that are multiplication factors for a document-zoom feature,
or numbers that correspond to the number of a keypad in a calculator
application. If the tag numbers are not instrinsically meaningful (that is, they
are arbitrary), it is prudent to define constants to express them.

Enter a number to identify
the object in your source
code.

Working with Interface Builder 3-109

3

 typedef enum {
 LEFT = 1,
 RIGHT,
 BOTTOM,
 TOP,
 HORIZONTAL_CENTERS,
 VERTICAL_CENTERS,
 BASELINES
} AlignmentType;

 When you need to identify a tagged objects in your code, use the tag method.

- align:sender
{
 [self alignBy:(AlignmentType)[[sender selectedCell] tag]];
 return self;
}

Making and Managing Connections
Once you build an interface with objects, you connect those objects so they can
communicate with each other. You make connections between objects in
Interface Builder by Control-dragging a line between them and then selecting a
name for the connection.

Communicating With Other Objects: Outlets and Actions

Outlets

An outlet is an instance variable that points to another object. Objects use
outlets to communicate with other objects; they simply send messages to the
object identified by the outlet.

3-110 OpenStep Development Tools—September 1996

3

Figure 3-95 Outlet

Using Interface Builder, you can declare and set outlets for the custom objects
in your application. You can also set ready-made outlets in many Application
Kit objects, such as browsers. .Once initialized, the connection information for
the outlet is stored in the nib file. At run time, the nib file is unarchived and the
outlet is reinitialized with the connection information.

The Application Kit defines two types of outlets that you can use to establish
specialized connections with other objects: delegates and targets.

Delegates

A delegate is an object that acts on behalf of another object. Many kit classes
define delegate outlets as an alternative to subclassing. All your object must do
is register itself as a delegate of the kit object. At important junctures in its life

 @interface Controller : NSObject
 {
 id dataForm;
 }

 - storeData: sender;
 .
 .
 .
 @end

dataForm

Working with Interface Builder 3-111

3

cycle, the kit object sends messages to its delegate, giving it an opportunity to
participate in processing and sometimes even the chance to veto some
behavior.

As examples, browsers request their delegates to supply the cells for browser
columns; applications inform their delegates when they (the application) are
initialized, hidden, and activated.

Targets

Targets are a special kind of outlet. They identify objects that can respond to
action messages. When a user activates an NSControl object (for instance,
clicking a button or moving a slider), that object sends an action message to the
target. The action message gives application-specific meaning to the original
mouse or key event.

Like a delegate, a target must implement methods to respond to the messages
it is sent. But unlike a delegate, which receives messages chosen from a limited
set defined by a kit, a target responds to action messages defined by the
programmer.

You can also make one object a target of a second object programmatically by
sending that second object setTarget: .

Actions

NSControl objects translate the event messages they receive when users
manipulate them into messages meaningful within the application. They then
send these messages to other objects. These application-specific messages
initiated by an NSControl object are called action messages, and the method
they invoke are called action methods. An NSControl object is simply a user-
interface device that permits the user to give instructions to the application, a
device that mediates between the user and the object that will ultimately
respond to the user's event.

3-112 OpenStep Development Tools—September 1996

3

Figure 3-96 Action

NSControl , an abstract class, defines for its many subclasses (such as
NSButton , NSScroller , NSTextField , and NSForm) a paradigm for inter-
object communication—action messages. But NSControl objects do not act
alone: they always contain one or more objects of NSActionCell or its
subclasses. The NSActionCell superclass defines instance variables for the
two elements essential to an action message:

• Target: the object that is responsible for responding to the user's action on
the NSControl

• Action: the method that specifies what the target is to do

 @interface Controller : NSObject
 {
 id dataForm;
 }

 - storeData: sender;
 .
 .
 .
 @end

storeData:

Working with Interface Builder 3-113

3

Action methods take a single argument, the id of the NSControl object that
sends the message. This argument enables the receiver to ask the control for
more information, if it's needed.

An NSControl can send a different action message to a different target for
each NSActionCell it contains. NSControls dispatch action messages
differently; for instance, an NSButton generally sends action messages on a
mouse-up event, but an NSSlider usually sends action messages
continuously, as long as the mouse button is pressed.

Connecting Objects

In an object-oriented application, isolated objects have little value; they need to
send messages to each other to get the work of the application done. Interface
Builder gives you a way to establish connections between objects.

To connect two objects, do the following:

1. Select an object.

2. Control-drag a connection to another object.

3. In the Inspector panel's Connections display, select an outlet or action.

4. Click the Connect button.

Begin making a connection in Interface Builder by Control-dragging a
connection line from one object to another object. Almost any object will do.
Usually you Control-drag a line between an object in the interface and an
object in the Instances display.

I

3-114 OpenStep Development Tools—September 1996

3

Figure 3-97 Connecting Two Objects

When you release the mouse button, the Inspector panel becomes the key
window (see Figure 3-98 on page 3-115). Its Connections display shows the
current and potential connections for the destination object.

Outlet Connections

In the example in Figure 3-97, the connection is made from a controller
object—a custom object that manages the application—to a text field. The
controller object (SimpleCalcInstance) declares several outlets—identifiers
of destination objects— as instance variables.

When you make a connection between objects, the first column of the
Connections display shows the source object's outlets ("source" meaning the
object from which a connection line is drawn).

While holding down the Control
key, click on an object and drag
the mouse toward the destination
object. A line is displayed.

Release the mouse button when a
box encloses the destination object.

Working with Interface Builder 3-115

3

Figure 3-98 Inspecting an Outlet Connection

You can make outlet connections between objects in the Instances display, as
shown in Figure 3-99 on page 3-116.

Outlets are listed in this column.

Click to select an unconnected outlet
(one without a dimple next to it).

A dimple indicates a connection already
exists for this outlet. Click on a dimpled
outlet to display the connection.

Click to make the connection.

3-116 OpenStep Development Tools—September 1996

3

Figure 3-99 Connecting Objects in the Instances Display

Action Connections

When you make a connection by dragging a line from an NSControl object in
the interface—a button, slider, text field, menu command, pop-up list, or
matrix—odds are that the destination object is a target, and that you can
complete the connection by selecting an action method, as shown in
Figure 3-100 on page 3-117.

Control-drag a
connection line
and release the
mouse button
when a box is
displayed around
the destination
object.

Working with Interface Builder 3-117

3

Figure 3-100 Making an Action Connection

The destination object in an action connection is frequently a custom object that
manages the application or a particular window (controller object).

When you make a connection from an NSControl object, the Inspector panel
becomes key and shows the Connections display for the destination object.

To make a connection involving an action
message, Control-drag a line from an
NSControl object to a destination object
that can respond to the message.

3-118 OpenStep Development Tools—September 1996

3

Figure 3-101 Inspecting an Action Connection

When the user manipulates the NSControl object, such as clicking on a button
or moving a slider, the action message is sent to the destination object (the
target).

Connections Within the Interface

Sometimes you can connect two objects on an interface. These connections can
involve both outlets and actions. Often one of the objects is a custom NSView
object, as in Figure 3-102 on page 3-119.

Working with Interface Builder 3-119

3

Figure 3-102 Connecting Objects within an Interface

Connections within an interface can also involve two Application Kit objects.
Two examples are interconnecting text fields (so the user can tab from field to
field), and connecting a menu command such as Print to an NSText object.

Note – To enable printing of an NSText object, drag a connection line from the
Print menu command (or other NSControl object that initiates printing) and
select the printPSCode: action in the Connections display.

Outlets are destination objects specified as instance variables. Actions are
methods that NSControl objects (such as buttons) invoke in another object.
See “Communicating With Other Objects: Outlets and Actions” on page 3-109
for more information.

“Creating a Class” on page 3-137 describes connecting the outlets and actions
of custom objects in the context of creating a class.

See “Communicating With Other Objects: Outlets and Actions” on page 3-109
for more information on targets and actions.

See “Compound Objects” on page 3-91 for descriptions of the interaction
between NSControl objects and NSCell objects, and of the role NSMatrix
objects play.

You can connect text fields and form fields so that when the user presses the
Tab key, the pointer moves to another field. See “Enabling Inter-Field Tabbing”
on page 3-128 for information on this procedure.

Control-drag a connection line from
one object to another, then release
the mouse button.

3-120 OpenStep Development Tools—September 1996

3

Making Connections in Outline Mode

You can make connections between objects in the outline mode of the Instances
display as well as its icon mode. The connections can be between an object in
the outline and an object in the interface (see Figure 3-103) or between two
objects listed in the outline (see Figure 3-105 on page 3-122). To connect objects
in outline mode, do the following:

1. Select an object.

2. Control-drag a connection to another object.

3. Specify an outlet or action in the Connections display for the destination
object.

Before you make a connection involving an object in outline mode, make sure
that the objects is visible in the display. (You might have to expand the object's
"parents" in outline mode to do this.)

Figure 3-103 Connecting an Object in the Outline with an Object in the Interface

The Connections display of the destination object's Inspector lists the possible
connections, as shown in Figure 3-104 on page 3-121.

When you
Control-drag
from the
selected object,
a connection line
is displayed.

When the destination
object is outlined, release
the mouse button.

Working with Interface Builder 3-121

3

Figure 3-104 Displaying the Possible Connections

The outline mode offers the useful capability for making connections without
leaving the nib file window. In this example, the same connection is made as in
Figure 3-103 on page 3-120.

Outlets are listed in this column.

Select only unconnected outlets (those
without a dimple next to them).

A dimple indicates a connection already
exists for this outlet. To display a
connection, click on a dimpled outlet.

Click to make the connection.

3-122 OpenStep Development Tools—September 1996

3

Figure 3-105 Making a Connection within the Nib FileWindow

When the destination object is outlined, its Connections display lists the
possible connections. Complete the connection as described above.

Examining Connections
• In the interface: Select an object and look at the Connections display of the

Inspector panel.

• In the Instances display: Select an object and look at the Connections display
of the Inspector panel.

• In the Connections display: Click a dimpled outlet to see the connection line
drawn.

• In outline mode: Click a triangle button in the column to the right of an
object.

Interface Builder gives you many ways to examine and verify connections
between objects. It makes it easy, for example, to discover what outlets and
actions might be associated with an object in the interface (see Figure 3-106).

Control-drag a line
between two objects.

Working with Interface Builder 3-123

3

Figure 3-106 Displaying the Outlets and Actions Associated with an Interface Object

You can also select an object in the Instances display (in both icon and outline
modes) and examine the Inspector panel as described above to find out what
object it is connected to.

You can also examine object connections going in the other direction, from the
Connections display to the interface and the Instances display (see Figure 3-107
on page 3-124).

Select an object in the interface.

The outlet or action involved in
the connection is highlighted and
dimpled.

The connection, highlighted
here, shows the object on the
otherside of the connection.

3-124 OpenStep Development Tools—September 1996

3

Figure 3-107 Examining a Connection through the Inspector Panel Connections Display

The Connections display allows you to see one connection at a time. The
outline mode of the Instances display (see Figure 3-108 on page 3-125) shows
you all connections an object has, both connections into the object and
connections from that object to other objects.

Click on an
object’s outlet or
action in the
Connections
display (must
have a dimple).

A line is
displayed
between the
objects that are
connected
through the
outlet or action.

Working with Interface Builder 3-125

3

Figure 3-108 Checking Connections in the Instances Display

When you click a three-dimensional triangle, lines appear to show the
connections between objects, as shown in Figure 3-109 on page 3-126. The
name and class of each connected object is highlighted in bold. Each
connection is labelled with the name of an outlet or action.

If the triangle is three-dimensional,
but has no number, the object has
only one connection in that direction.

This column
displays, for each
object, the number
of connections out
(left) and the
number of
connections in
(right).

Click on the left
triangle to see
details on
connections out of
the object.

A triangle that is grayed-out
indicates no connections in
that direction.

3-126 OpenStep Development Tools—September 1996

3

Figure 3-109 Looking at Connections Out in the Instances Display

To see connections into an object, as shown in Figure 3-110, click on a three-
dimensional triangle that points to the left (that is, a triangle on the right side
of the connections column).

Figure 3-110 Looking at Connections In in the Instances Display

To see more of a
column, drag the
column sideways.

The right-pointing
triangle indicates
connection-out.
Lines show you
where the
connections lead.

The left-pointing triangle indicates
connection-in. The electrical outlet
icon represents an outlet; the name
of the outlet follows.

Working with Interface Builder 3-127

3

An object may have multiple connections with another object, both in and out,
both outlets and actions. In these cases, the outline mode lets you toggle
between the connections.

To make the connection lines disappear, click the three-dimensional triangle
button that is highlighted.

Identifying Objects in Outline Mode
• To see a representation of an object, Alt-click on it in outline mode of the

Instances display.

• To have an arrow point at the interface object, Control-Shift-click on the
object in outline mode.

In the outline mode of the Instances display you might want to verify what an
object is before connecting it to another object. You have two graphical ways to
identify an interface object. One method displays an image representing a
selected object, as shown in Figure 3-111.

Figure 3-111 Displaying an Image Representing the Object Selected in the Outline

When you Alt-click on non-NSView objects in outline mode, the images that
represent them in icon mode are displayed (cubes for custom objects, mini-
windows for panels and windows). Menus, First Responder, and File's Owner
do not display icons.

Alt-click on the
object you want
to see a
representation of.

If te object is an
NSView, Interface
Builder displays it
beneath the
pointer.

3-128 OpenStep Development Tools—September 1996

3

The other technique locates an object in the interface with a large arrow, as
shown in Figure 3-112.

Figure 3-112 Locating the Object in the Interface with an Arrow

Control-Shift-Clicking on Menu, File's Owner, and First Responder has no
effect.

See “Outline Mode of Instances Display” on page 3-12 for an introduction to
outline mode.

Enabling Inter-Field Tabbing

Sometimes when users press the Tab or Return key in a window with multiple
fields, you want the pointer to jump from the current text or form field to the
next field. When users press Shift-Tab, you want the pointer to go the previous
field. An NSForm object (a matrix) automatically moves the pointer between its
fields. But between text fields, between NSForms, or between an NSForm and a
text field, you must specify this behavior.

To specifying inter-field tabbing, do the following:

1. Make a connection line between forms or fields.

2. Select nextText in the object's Connections display.

3. Click the Connect button.

While pressing Control and Shift,
click on an object.

An arrow points at the
object in the interface.

Working with Interface Builder 3-129

3

The NSMatrix class (of which NSForm is a subclass) and the NSTextField
class define an instance variable, nextText , as an outlet. This is what you
connect (see Figure 3-113).

Figure 3-113 Connecting Two NSForm Objects

Next, make the connection in the Inspector panel as shown in Figure 3-114 on
page 3-130.

Click on the form to select it.

Control-drag a connection to a text field
or another form.

3-130 OpenStep Development Tools—September 1996

3

Figure 3-114 Making the Connection in the Inspector Panel

Note the textDelegate outlet in this example's Inspector. This is the object
that receives delegation messages from the NSText class on behalf of a text-
editable field.

Disconnecting Objects

Interface Builder gives you two ways to break the connections between objects.
The first method uses the Inspector panel, as shown in Figure 3-115 on
page 3-131, through the following steps.

1. Select an object.

2. In the Connections display, select a connection.

Working with Interface Builder 3-131

3

3. Click Disconnect.

Figure 3-115 Disconnecting Objects Using the Inspector Panel

You can also initiate this procedure by selecting objects in icon mode of the
Instances display, and then disconnecting them in the Inspector panel as above.

The alternative method for disconnecting objects is somewhat easier because
you can complete the operation in one place: in outline mode of the Instances
display. First show connections for an object by clicking a three-dimensional
triangle button, as shown in Figure 3-116 on page 3-132.

Make sure a single object is selected.

When you select an outlet
or action, a dimple,
indicating a connection,
should appear next to it.

Verify the connection
before you break it (the
item on right is the object
at the other end of the
connection.

Click here to break the
connection.

3-132 OpenStep Development Tools—September 1996

3

Figure 3-116 Disconnecting Object in the Instances Display

To make the scissors pointer appear over a connection line, you must press the
Control key over a line on the right side of the column divider (nearest the
connection-out and connection-in triangle buttons). You Control-click on the
left side of the column divider to begin connection operations. See “Examining
Connections” on page 3-122 to learn how to use outline mode to display the
connections between objects.

Attaching Help to Objects
The Help Builder panel makes it easy to associate help text with any object in
your application’s user interface. (To learn about the design of the OpenStep
help system, see the NSHelpPanel class specification in OpenStep Programmng
Reference.)

The Help Builder panel is a slightly modified version of the standard Help
panel.

Click to show the
connections for
an object (left
triangle for
connections out,
right triangle for
connections in)..

Control-click on
a connection line
to sever a
connection.

Working with Interface Builder 3-133

3

Figure 3-117 Help Builder Panel

Attaching help to an object involves selecting an object in your application,
displaying the help text in the Help Builder panel, optionally selecting a help
marker within the text, and clicking on the AttachFile to Selection button.
Thereafter, when the application runs and the user Help-clicks on the object
(that is, holds down the Help key and clicks on the object), the specified help
text is displayed in the application’s Help panel. However, before you begin
attaching help text to your application’s objects, you must provide your
application with two components: a Help menu item and a Help directory.

Interface Builder’s Menu palette supplies an Info menu item that, when
dragged to your application’s main menu, reveals a submenu containing a
Help menu item. This menu item is preconfigured to open the Help panel. (If
you inspect the Help item’s connections, you will see that it sends a
showHelpPanel: message to the First Responder object.)

3-134 OpenStep Development Tools—September 1996

3

Project Builder can provide your application with the required Help directory.
Choose the Add Help Directory command in Project Builder’s Project menu to
create this directory. Project Builder creates the directory within the .lproj
directory of your chosen development language (for example,
English.lproj/Help). It copies into this directory generic table-of-contents
and index files.

The next step is to customize these files and to add content files of your own.
The generic help text that is accessed through the supplied table-of-contents
and index files gives help on basic operations, such as using the mouse and
choosing commands. You will want to add files that describe the operations
that are unique to your application. You can also override or eliminate any of
the generic help text that is not applicable to your application.

You create help files using Edit. (Make sure that Edit is in Developer Mode so
that the Help commands can be accessed from the Format menu.) Perhaps the
easiest way to ensure that the files you add agree in style and formatting with
the generic help files is to display a generic file, copy its contents, and paste it
into a new Edit document. Be sure to resize the new document’s window to the
same width as the original so that the text wraps to the same margins. You can
then modify the contents of the new help document and save it in the Help
directory. If you think you will want to associate objects with specific passages
within the file, rather than to the file in general, you can place help markers
within the document.

Each file you add should be represented by a new entry in the table-of-contents
file. (However, see the NSHelpPanel class specification for an exception to this
rule.) After adding content files, you will also probably have to update the
index.

Once the table-of-contents, content, and index files for your help system are
finished, you can begin attaching help to your application’s user-interface
objects. Display the Help Builder panel by choosing the Help Builder
command from Interface Builder’s Tools menu or by clicking on the Help
Builder button in the Help display of the Inspector panel. Select an object in
your application’s user interface, locate the relevant help text in the Help
Builder panel, and click on the Attach... button. If the Help inspector is open, it
displays this new association in its Help Attachments list.

Working with Interface Builder 3-135

3

The Help Builder panel offers several ways to locate specific portions of help
text. First, you can use the table-of-contents or index displays to locate a file. In
addition, the pop-up list below the Find field lets you search for help files by
name, for marker names within the help files, or for any string.

Reviewing Help Attachments
The Help display, shown in Figure 3-118, lets you review attachments between
objects in your application and help text. It also gives you access to Interface
Builder’s Help Builder panel.

Figure 3-118 Help Display

The Help display is used in conjunction with the Help Builder panel. See
“Attaching Help to Objects” on page 3-132 for information on associating help
text with objects in your application.

3-136 OpenStep Development Tools—September 1996

3

Assuming you have attached help to objects in your application, the Help
display of the Inspector panel will list those attachments. Each entry in the list
has two parts. The left half of the entry identifies the object, and the right half
displays the file name for the attached help. Below the Help Attachments list
are two text fields. The Marker field names the marker that the object is
attached to within the help file. If the object is not attached to any marker in
the file, the Marker field is blank. The File field displays the path of the help
file relative to the application’s Help directory. If the entire path is not visible,
scroll the text field horizontally to reveal the hidden portion.

You can remove an attachment by selecting it in the list and clicking on the
Detach button.

Testing the Interface
After you create an interface, Interface Builder lets you see how it works from
the user's perspective. Just choose the Test Interface command from the
Document menu.

1. Choose the Test Interface menu command.

2. Check the functioning of kit objects.

3. Choose Quit from the application menu or double-click the switch icon in
the application dock.

Interface Builder's menu, windows, and panels disappear, leaving only the
actual interface and (if you are testing the application's main nib file) the main
menu. Give your interface a test ride. Here are some of the things you might
try:

• Verify that the pointer moves from field to field when you press Tab and
Return.

• Verify that you can copy, cut, and paste text (First Responder actions).

• See if you can print (the Print menu item must be connected to an
appropriate NSView object's printPSCode: action method).

Working with Interface Builder 3-137

3

Note – When you test your interface, the behavior provided by your custom
classes is not called into play (with the exception of static, compiled palette
objects). You can only test the behavior that kit and static palette objects exhibit
in themselves and when they send messages to each other. To test all
components of your application, you must compile and run it.

When you are finished testing the interface, exit from test mode.

Figure 3-119 Exiting Test Mode

Creating a Class
Creating a class, or adding an existing class, is not a set of discrete, modular
tasks, but a process consisting of many interdependent tasks. The order of
these tasks is significant,: with some exceptions, you need only follow the tasks
in the sections that follow sequentially, from first task to last task, and you will
create a useful class.

However, the exceptions are significant, so flowcharts are provided to point the
way. Figure 3-120 on page 3-139 guides you through the tasks required to
define and implement a subclass of a root class or the NSView class.
Figure 3-120 on page 3-139 identifies the tasks you must complete to integrate
an existing class into an application. Table 3-8 on page 3-138 explains the
symbols used in the flow charts.

If testing an auxiliary
nib file:

Double-click on the
test mode icon in the
application dock to exit
test mode.

If testing the main nib
file:

Click here to end test
mode and return to
Interface Builder.

3-138 OpenStep Development Tools—September 1996

3

Note – Interface Builder’s role in subclass creation is to help you locate the
class in the hierarchy. name it, coneect an instance of it with other objects in an
application, and generate template source files. When Interface Builder’s role is
finished, you then must make the most important contribution: the source code
that gives your class its distinctive behavior.

Table 3-8 Flow Chart Legend

Symbol Meaning

Main Flow

Decision Point

Optional Flow

Section in this
chapter that
describes a task you
perform

Working with Interface Builder 3-139

3

Figure 3-120 Flowchart for Defining and Implementing a Subclass of a Root Class or
NSView

1

Naming a
New Class

Specifying
Outlets and

Actions

NSView or
Non-NSView
 subclass?

Creating an
Instance

Implementing
Subclass of

NSView

Connecting
Your Class’s

Outlets

What is
superclass?

Making Your
Class a

Delegate

Connecting
Your Class’s

Actions

Non-
NSView

NSView

Implementing a
Subclass of

NSObject

Implementing a
Subclass of

NSView

Generating
code files

1. If you branch to "Implementing a Subclass of NSView" after specifying outlets and actions, complete only the
step "Making an Instance of an NSView Subclass" in this task for now, and go on to the next task

2. After generating code files, you must switch over to Project Builder and open the header (.h) and
implementation (.m) files for the class in Edit or some other code editor.

2

3-140 OpenStep Development Tools—September 1996

3

Figure 3-121 Flowchart for Integrating an Existing Class into an Application

2

Adding
Existing

Classes to
your Nib File

Creating an
Instance

Implementing
Subclass of

NSView

Connecting
Your Class’s

Outlets

Connecting
Your Class’s

Actions

Non-
NSView

NSView

NSView or
Non-NSView
 subclass?

Making Your
Class a

Delegate

1

1. You will probably want to add your class’s header (.h) and implementation (.m) files to Project Builder as well
as Interface Builder. See “Adding Files to a Project” on page 2-17. for information on this procedure.

2. If you branch to "Implementing a Subclass of NSView" after specifying outlets and actions, complete only the
step "Making an Instance of an NSView Subclass" in this task for now, and go on to the next task

Working with Interface Builder 3-141

3

Naming a New Class

When you create an application in OpenStep, you must create at least one
subclass to do anything meaningful. The Application Kit, Foundation Kit, and
other OpenStep kits are powerful frameworks that do much of the work for
you, but you must always supply one or more subclasses, the distinctive and
logical flow of your application. To create a subclass, do the following:

1. Choose the Classes display of the nib file window.

2. Select the class from which you want your subclass to inherit.

3. Choose Subclass from the nib file window’s Operations menu.

4. Type the name of your class over the highlighted default name.

When you create a class, the first thing you must do is select your class’s
superclass. Make your selection in the Classes display of the nib file window,
as shown in Figure 3-122.

Figure 3-122 Selecting and Subclassing a Superclass

Click here to
choose the
Classes display.

Click to highlight
the class that is to
be your class’s
superclass.

Choose this
command to insert
your undefined
class into the
class hierarchy.

3-142 OpenStep Development Tools—September 1996

3

Note – Pressing the Return key when a class is selected is equivalent to
choosing the Subclass command.

The new class is listed under its superclass with a default name: the superclass
name prefixed with "My", such as MyNSObject . Replace this default name
with the new name, as shown in Figure 3-123.

Figure 3-123 Naming the New Class

Later, if you want to rename the class, first re-select the class name by double-
clicking on it. Then type the new name, replacing the selected text.

A Perspective on Class Hierarchy

The Classes display of the nib file window (see Figure 3-124 on page 3-143)
shows the classes of which the current nib file is aware. The display lets you
browse through both OpenStep classes and custom classes. It also depicts, by
indentation, class inheritance relationships, and reveals the names of each
class’s outlets and actions.

Type the name of
your new class
over the default
name. Press
Return.

Working with Interface Builder 3-143

3

Figure 3-124 Classes Display

You can move up and down the list of classes by pressing the up arrow key
and down arrow key on your keyboard. When a class is highlighted, you can
show its subclasses by pressing the right arrow key, and collapse an indented
list by selecting the superclass and pressing the left arrow key. If the nib file
window is active, incremental search is active; just type the first few letters of a
class name until it is highlighted.

Specifying Outlets and Actions

An object isolated from other objects is of little use. Interface Builder provides
two ways for you to specify how objects of your class communicate with the
outlets and actions of other objects: outlets and actions. To specify an outlet or
action for your class, do the following:

1. Click on the outlet button or the action button for the class.

2. Select Outlets or Actions and press the Return key.

3. Enter the name of the new outlet or action in place of the default name
that is displayed.

Before you begin this task, take a moment to consider what other objects you
want instances of your class to send messages to, and what kinds of requests
instances of your class are likely to receive from other objects.

The Classes display
shows hierarchy by
indentation; for example,
NSApplication inherits
from NSResponder . If the
circle button is filled, the
class has subclasses that
are not shown. Click on the
button to display the
subclasses.

If the class name is black,
it is a custom class. If the
class name is gray, it is an
OpenStep class.

Click on outlet (electrical
outlet icon) and action
(cross-hairs icon)
buttons to display class
outlets and actions.

Use the Operations
pull-down list for
operations related to
creating a class.

3-144 OpenStep Development Tools—September 1996

3

Note – For background information on outlets and actions, see
“Communicating With Other Objects: Outlets and Actions” on page 3-109.

Adding Outlets

Outlets are instance variables that identify other objects. In the Classes display,
you access the outlets of a class by clicking on the electrical outlet buttons, as
shown in Figure 3-125.

Figure 3-125 Accessing the Outlets of a Class

When you press the Return key or choose the Add outlet command from the
Operations menu, a new outlet is displayed under Outlets, as shown in
Figure 3-126 on page 3-145. Type the name of the outlet in place of the default
name and press the Return key.

Click on this
button to view or
add outlets.

Outlets and
Actions appear
underneath the
class, with
Outlets
highlighted.

Press the Return
key or choose the
Add Outlet
command to add
a new outlet.

Working with Interface Builder 3-145

3

Figure 3-126 Naming a New Outlet

When you press the Return key, the outlet is renamed and Interface Builder
highlights the new outlet. To add another outlet, press the Return key again.

Note – To display a class’s outlets and actions (with Outlets highlighted), you
can choose the Edit class command from the nib file window’s Operations
menu instead of clicking on the outlet button.

Adding Actions

Actions are methods invoked as a direct consequence of the manipulation of
NSControl objects in your application’s interface, such as when users click on
a button. In the Classes display, you access the actions of a class by clicking on
the cross-hairs button, as shown in Figure 3-127 on page 3-146.

Type the name of
an outlet in place
of the default
name and press
the Return key.

3-146 OpenStep Development Tools—September 1996

3

Figure 3-127 Accessing the Actions of a Class

When you press the Return key or choose the Add action command from the
Operations menu, a new action is displayed under Actions, as shown in
Figure 3-128. Type the name of the action in place of the default name and
press the Return key.

Figure 3-128 Naming a New Action

Click on this
button to view or
add actions.

Outlets and
Actions appear
underneath the
class, with
Actions
highlighted.

Press the Return
key or choose the
Add action
command to add
a new action.

Type the name of
an action in place
of the default
name and press
the Return key.

Working with Interface Builder 3-147

3

When you press the Return key, the action is renamed and Interface Builder
highlights the new action. If you did not specify a colon (:) after the action
name, Interface Builder appends it for you. To add another action, press the
Return key again.

When you have finished adding outlets and actions, click on the class name to
collapse the list of outlets and actions.

Creating an Instance of Your Class

You cannot connect classes to other classes. Only instances of
classes—objects—can really communicate with each other. Interface Builder
requires a real instance of your class to enable the connection of your object to
other objects.

The procedure for generating instances of non-NSView classes in Interface
Builder is simple (see Figure 3-129). The following steps apply only to classes
that do not inherit from the NSView class.

1. Select your class in the Classes display.

2. Choose Instantiate from the Operations pull-down menu.

3-148 OpenStep Development Tools—September 1996

3

Figure 3-129 Instantiating a Custom Class

When the new instance is displayed in the Instances display (see Figure 3-130
on page 3-149), it takes the same name as the class. Rename it, if you want, to
something more indicative of an object. Double-click on the text to select it,
then type the new name. For example, AppController could become
AppControllerObject . Be aware, however, that this name is merely a
convenient way to identify the object in Interface Builder; it does not create an
identifier that you can reference in code.

Select a custom
class.

Choose
Instantiate from
this menu.

Working with Interface Builder 3-149

3

Figure 3-130 The New Instance in the Instances Display

Connecting Your Class’s Outlets

An outlet is an instance variable that identifies another object. You initialize an
outlet in Interface Builder by making a connection from your instance to
another object, as shown in Figure 3-131 on page 3-150. To do so, perform the
following steps:

1. Control-drag a connection line from the instance to another object.

2. In the Connections display, select the outlet that identifies the destination
object.

3. Click on the Connect button.

An instance of
the class is
displayed in the
Instances
display.

3-150 OpenStep Development Tools—September 1996

3

Figure 3-131 Connecting an Outlet

When you establish the line connection, the Inspector panel for the destination
object becomes the key window. Specify the outlet identifier for this object as
shown in Figure 3-132 on page 3-151.

Control-drag a
connection line
from an instance
of your class.

When the
destination
object is outlined,
release the
mouse button.

Working with Interface Builder 3-151

3

Figure 3-132 Specifying the Outlet Identifier

Note – This task and the next one, “Connecting Your Class’s Actions,"
summarize information presented more fully in “Making and Managing
Connections” on page 3-109.

Connecting Your Class’s Actions

An action is a method that an NSControl object invokes in your instance—the
target object—when a user activates the NSControl (for example, clicks on a
button). you make an action connection in Interface Builder by drawing a
connection line form the NSControl object to the instance of your class, as
shown in Figure 3-133 on page 3-152.

Click here to make the connection.

Select the intended outlet.

3-152 OpenStep Development Tools—September 1996

3

To make an action connection, do the following:

1. Control-drag a connection line from an NSControl object to your class’s
instance.

2. In the Connections display, select the appropriate action.

3. Click on the Connect button.

Figure 3-133 Connecting an NSControl Object

When the line is set between objects, the second column of the Connections
display shows the action methods that the target object (your instance) has
declared. Select the action for this NSControl object, as shown in Figure 3-134
on page 3-153.

Locate an
NSControl
object and
Control-drag a
connection line
from it.

The destination
object is usually
a custom object
whose class has
defined action
methods.
Release the
mouse button
when the object
is outlined.

Working with Interface Builder 3-153

3

Figure 3-134 Selecting the Action Method

Note – You can make connections between objects entirely within the outline
mode of the Instances display. For more information on the outline mode, see
“Making and Managing Connections” on page 3-109.

Generating Source Code Files

Before you begin specifying the behavior of your class in code, you typically
generate template source code files for your class from the information
contained in the nib file. The header file MyClass .h created by Interface
Builder declares the outlets you specified as instance variables of type id and

Select the target, which is your instance.

Select an action defined for the class.

A dimple indicates that a connection
already exists for the action.

Click here to make the connection.

3-154 OpenStep Development Tools—September 1996

3

declares the actions as instance methods of the form methodName.sender .
The implementation file MyClass .m contains emply function blocks for each of
these methods.

To generate source code files for your class, do the following:

1. Select your class in the Classes display.

2. Choose Unparse from the Operations pull-down menu.

3. Click on Yes in the subsequent attention panels.

Interface Builder generates template code files by unparsing the nib file (see
Figure 3-135 on page 3-154).

Figure 3-135 Unparsing the Nib File

Interface Builder then displays an attention panel to confirm creation of the
files (see Figure 3-136 on page 3-155).

Select your
custom class.

Choose the
Unparse
command.

Working with Interface Builder 3-155

3

Figure 3-136 Unparse Attention Panel

If you confirm creation and the nib file is assocated with a project, another
attention panel subsequently asks if you want to add the template code files to
the project. Click on Yes to add the files to the project.

Implementing a Subclass of NSObject

This task summarizes the steps you must complete—and can optionally
complete—to implement a subclass of NSObject . With this kind of subclass,
the subtleties arising from inheritied behavior are simplified. Still, the
interaction of your class with the root class is very important, and applies to all
subclases.

In this task you write code, and so there is a temporary departure from
interface Builder. The task assumes you have complete the following
prerequisites in Interface Builder, presented earlier in this chapter:

• Naming a class and positioning it in the class hierarchy

• Specifying outlets and actions for the class

• Creating an instance of the class

• Connecting the instance to other objects through the outlets and actions

• Generating code files by unparsing the nib file

When you have generated code files in Interface Builder, switch over to Project
Builder and open your project. Open your class’s header file (ClassName .h)
and implementation file (ClassName .m) in Edit windows.

Click to confirm.

3-156 OpenStep Development Tools—September 1996

3

1. Import header files

2. Declare new instance variables.

3. Implement accessor methods.

4. Define target/action behavior.

5. Define initialization and cleanup behavior.

6. Define how objects are copied.

7. Define how objects are compared.

8. Implement archiving and unarchiving.

9. Define special behavior for your class.

Making Your Class a Delegate

Several OpenStep classes allow you to register their object as a delegate. As
certain events occur, the kit objects send messages to their delegates, giving
them the opportunity to participate in processing. In Interface Builder, you can
easily designate your class’s instance as a delegate, as shown in Figure 3-137
on page 3-157. To do so, perform the following steps:

1. Connect your instance to an object that has delegates.

2. Select the delegate outlet in the Connections Inspector panel.

3. Click on Connect.

4. Implement the delegate methods.

Working with Interface Builder 3-157

3

Figure 3-137 Making Your Class a Delegate

Next implement the delegate methods to which you want your object to
respond.

Make a connection
from an object of
the classwith
delegate methods
to an instance of
your class.

The delegate outlet is in the first
column of the Connections display.

Click to make the connection.

3-158 OpenStep Development Tools—September 1996

3

Note – Messages to delegates sometimes notify them of impending or just-
transpired events, and sometimes request them to complete some work. Major
classes with delegate methods are NSApplication , NSWindow, NSText , and
NSBrowser . See OpenStep Programming Reference for details on delegate
methods

Implementing an NSView Subclass

Making a subclass of the NSView class is a procedure that differs from making
a subclass of the NSObject class. But it starts in the same way. In the Classes
display of the nib file window, choose Subclass from the Operations pull-down
menu while NSView is highlighted in the browser. Then name your class and
add outlets and actions.

To implement an NSView subclass, do the following:

1. Identify the class and its outlets and actions.

2. Place and resize and NSCustomView object on a window or panel.

3. Assign your class as the class of the NSCustomView .

4. Connect the instance to other objects in the interface.

5. Generate code files.

6. Complete programming tasks necessary for any object.

Working with Interface Builder 3-159

3

7. Complete programming tasks specific to NSView objects.

Figure 3-138 An NSView Custom Class

Note – The steps in this task, insofar as they apply to NSView, also apply to
creating classes that inherit from subclasses of NSView.

Place a proxy instance of your class in your interface, as shown in Figure 3-139
on page 3-160. Interface Builder provides a CustomView object to represent
instances of NSView subclasses.

3-160 OpenStep Development Tools—September 1996

3

Figure 3-139 Making an Instance of an NSView Subclass

Position and resize the CustomView object, and while it is still selected, bring
up the Attributes display of the Inspector panel (see Figure 3-140 on
page 3-161). Assign a class name to the object; this creates an instance of your
NSView subclass.

Drag the CustomView object
from the Views palette...

... and drop it on
a window or
panel of your
interface.

Working with Interface Builder 3-161

3

Figure 3-140 Assigning a Class Name to your NSView Object

Now complete the following three tasks, which are the same tasks that follow
the instantiation of an NSObject subclass:

• Connect the instance to other objects in the interface (see “Connecting Your
Class’s Outlets” on page 3-149 and “Connecting Your Class’s Actions” on
page 3-151). But now the instance is displayed as part of the interface, and
not as an icon in the Instances display of the nib file window.

• Generate code files and have them inserted in your project (see “Generating
Source Code Files” on page 3-153).

• Switch over to the project in Project Builder that contains the nib file. Open
your class’s code files in Edit and complete the programming tasks for your
subclass.

Clcik on your class name to assign it to
the CustomView object. This step
creates an instance of your NSView
subclass in Interface Builder.

3-162 OpenStep Development Tools—September 1996

3

Adding Existing Classes to Your Nib File
• Drag the header file from the File Viewer or Project Builder into the nib file

window (see Figure 3-141).

or

• Copy a class in one nib file and paste it into another.

The easiest way to add a class to your nib file is to drag the header file for an
existing custom class from the Workspace Manager’s File Viewer into Interface
Builder.

Figure 3-141 Dragging a Header File into Your Nib File

You can also add a class definition to a nib file by dragging a header or
implementation file from Project Builder into a nib file window.

The new class is displayed in the Classes display under its subclass and with
its outlets and actions defined. After adding the class, you must still connect it
to other objects through its outlets and actions. To do so, complete the
following steps:

1. Make an instance of the class (for NSView subclasses, that means
assigning your class name to the NSCustomView object).

2. Connect the instance’s outlets and actions to other objects in the nib file.

Working with Interface Builder 3-163

3

Note – Instead of defining a class in Interface Builder, you can write a header
file and drag it into a nib file window as described above. When writing your
header file, be sure to declare outlets as instance variables of type id . Declare
actions as methods with a single argument: sender .

Updating a Class Definition

If you later add outlets and actions to the header file, or delete them from it,
Interface Builder allows you to update the nib file with this new information
(see Figure 3-142).

• Choose the Parse command and select a header file in the Open panel.

Figure 3-142 Updating the Nib File

Interface Builder brings up an Open panel for you to confirm (or select) the
class definition to update (see Figure 3-143 on page 3-164).

In the Classes
display, select
the class to be
updated.

Choose the
Parse command.

3-164 OpenStep Development Tools—September 1996

3

Figure 3-143 Selecting the Class Definition to Update

If there are any new outlets and actions, remember to connects these outlets
and actions to other objects in the nib file.

Note – You can also use the Parse command to add an existing class to a nib
file (see “Adding Existing Classes to Your Nib File” on page 3-162), or you can
create a header file and read it into a nib file through the Parse command.

Adding IDL Template Objects to Your Interface

The IDL display of the File window shows the IDL types that are available to
your application. You can parse IDL files into your application and instantiate
IDL template objects using the Actions pull-down list.

The Parse IDL button (see Figure 3-144) displays an Open panel that lets you
specify the IDL type file you want Interface Builder to parse. Interface Builder
parses the type from the file and then displays the names of the IDL types in
the IDL display.

The header file of the class
selected in the Classes display is
highlighted. If you did not select a
class in the Classes display, select
one now or type its name.

Click to have the new information
parsed into the nib file.

Working with Interface Builder 3-165

3

Figure 3-144 Parse IDL Button (IDL Display)

You can instantiate an IDL template object from any of the IDL interfaces
shown in the IDL display.

The Make Template Object button (see Figure 3-145) creates an IDL template
object and places an icon representing that object in the Instances display of the
File window. The template object does not make a connection with its NEO
system until the nib file is loaded into your application at run time. Therefore,
the NEO system does not have to be running when you create interfaces with
IDL template objects.

Figure 3-145 Make Template Object Button (IDL Display)

The name of the object is derived from the name of the IDL type from which it
is instantiated. You must change its name in your application to the name by
which it is known to the NEO Naming Service. If you have access to the
NamingContext (that is, the server that implements the object is running and is
part of your NEO workgroup), you can determine this name by using
neoadmin . (For an overview of the NEO Naming Service and information on
using neoadmin , see NEO System Management.) If you do not have access to
the NamingContext, you may need to get the correct name for the object from
the developer who developed its server. You change the name by bringing up
an Attributes inspector for the IDL template object and typing in the new
name.

Connecting IDL Template Objects

Connections cannot be dragged from IDL template objects because IDL
template objects have no outlets or actions to which connections can be made.
Connections can be dragged from NSCustomObjects or NSCustomViews to
IDL objects because the outlets in NSCustomObjects and NSCustomViews
that you add can have their types changed (see "Outlet Autotyping" below).

3-166 OpenStep Development Tools—September 1996

3

After you click on the Connect button, the button’s title changes to Disconnect,
allowing you to remove the connection. If you cut or copy a connected object
and then paste it, its connections are severed.

Note – You can connect IDL template objects only to NSCustomObjects or
NSCustomViews subclassed from Application Kit objects. You must use outlets
that you have added to the custom objects. See “Outlet Autotyping” below for
information on how outlets are autotyped when connected to IDL template
objects.

Outlet Autotyping

The OpenStep programmatic interface encourages developers to add types to
variables wherever possible, but does not require types. Interface Builder
supports types by autotyping outlets in NSCustomObjects and
NSCustomViews .

When you connect an object to an outlet you have added to an
NSCustomObject or NSCustomView , the outlet's type is automatically
changed from id to the class of the object that is the source of the connection.
If the source object is an IDL template object, the IDL type is used instead.

For Objective C objects, autotyping reduces the number of warning messages
emitted by the compiler when compiling code generated by Interface Builder,
and reduces the possibility of a run time type error (that is, an exception due to
the object not supporting a method selector). For IDL template objects,
autotyping removes the possibility of a compiler error, since IDL types are
statically checked and the compiler does not compile a file unless the IDL types
of objects and variables match.

If you later try to connect the same outlet to an object of a different class, the
outlet type may be altered:

• If the source object's class is a subclass of the outlet type, then the
connection succeeds and the outlet type is not changed for either IDL or
Objective C.

• If the source object’s class is a superclass of the outlet type, then the outlet’s
type is changed to the source object’s class for both IDL and Objective C.

Working with Interface Builder 3-167

3

• If either the source object or outlet type is an Objective C class, and the other
is an IDL type, you are prompted about whether you want to change the
outlet type.removing all existing connections to other objects. If you answer
YES, the outlet type is changed to the source object's type, and all
connections to other objects having that outlet are removed.

• If no subclass/superclass relationship exists, then an outlet with an
Objective C type is changed to id . You are prompted about whether you
want to change the outlet type for an outlet with an IDL type, removing all
existing connections to other objects. If you answer YES, the outlet type is
changed to the source object's type, and all connections to other objects
having that outlet are removed.

In addition, the outlet browser in the Connections display of the Inspector
panel deactivates outlets and the Connect button if a connection is dragged to
an object that cannot be connected to the outlet. For example, an IDL object
cannot be connected to the target outlet in an NSButton object, because an
NSButton object is created by the Application Kit and the types of Application
Kit outlets cannot be changed (they are always id).

Setting Preferences
You open the Preferences panel by choosing the Preferences command in the
Info menu. This panel has two displays; you use the pop-up list at the top of
the panel to access these displays.

General Preferences

These preferences control which panels appear when Interface Builder is
launched and also whether a backup file is created when the nib file is saved.

3-168 OpenStep Development Tools—September 1996

3

Figure 3-146 Interface Builder’s General Preferences Panel

If the Save Option box is checked, Interface Builder creates a backup file
whenever you save a nib file that has been modified. Assuming the box is
checked, if you open a nib file named FindPanel.nib , make changes, and
then save the modified file, Interface Builder renames the original file
FindPanel.nib~ before saving the modified file as FindPanel.nib . Because
of the safety of having a backup file, it is generally better to leave this box
checked.

Palettes Preferences

This display of the Preferences panel shows you which palettes are available to
Interface Builder and lets you control which palettes are installed in the
Palettes window.

Working with Interface Builder 3-169

3

Figure 3-147 Interface Builder’s Palettes Preferences Panel

Each palette is represented by an icon. The palettes that are already installed in
the Palettes window display their titles in gray; those that have not been
installed display their titles in black. Double-clicking on the icon toggles the
state of the palette: If it was installed, it is removed from the panel; if it was
uninstalled, it is installed in the panel.

When Interface Builder begins running, it loads the standard palettes (those
displayed in the top row of the illustration above). It also adds to the
Preferences display any palettes the user has previously loaded using the
Open... command on the Palettes menu.

Adding Custom Palettes, Inspectors, and Editors
Interface Builder’s primary value as a development tool is that it lets you
interact directly with the objects that will make up your application. In general,
these objects are defined by the OpenStep system software. However, it is
possible to extend Interface Builder’s library of objects by creating custom
palettes, thus letting you interact directly with objects that you or other
developers have created.

3-170 OpenStep Development Tools—September 1996

3

A custom palette can contain objects of various sorts. Most commonly, a
custom palette contains NSView objects, objects that the user instantiates by
dragging into a standard window. It is also possible to create custom palettes
that contain NSMenuCells (which are instantiated by being dragged into a
menu), NSWindows (which are instantiated by being dragged into the
workspace), and other non-NSView objects (which are instantiated by being
dragged into the File window).

For any custom palette object, you can provide one or more inspectors. A
custom object’s inspector is displayed in the Inspector panel when the user
selects the object. Most custom objects require an Attributes inspector. For
example, the fictitious RepeatButton class mentioned earlier would probably
require an Attributes inspector to let the user set the repeat rate for a given
button. It could also supply its own Connections, Size, and Help inspectors,
although the standard versions of these inspectors are generally adequate for
most uses.

Finally, a more complex custom object may require its own editor. An editor
controls how a user can interact with a selected object. Interface Builder itself
supplies editors for the objects it knows about. For example, when you double-
click on a window icon in the File window, Interface Builder’s window editor
is invoked and brings the actual window to the front. Or, when you double-
click on an NSForm object in an application window, Interface Builder’s matrix
editor is invoked, letting you drag cells to new positions.

An editor that you provide must open its own window when the user
double-clicks on the custom object. Since each custom object can have its own
editor window, editors make copy and paste or drag and drop operations
between editor windows possible.

Creating custom palettes, inspectors, and editors involves working with
Interface Builder’s application programming interface (API). This API is
described in detail in Appendix B, “Interface Builder Application
Programming Interface,” Appendix C, “Interface Builder API Classes,”
Appendix D, “Interface Builder API Protocols,” and Appendix E, “Interface
Builder API Types and Constants.”

Working with Interface Builder 3-171

3

Interface Builder Command Reference
The remainder of this chapter gives short descriptions of Interface Builder’s
commands. Only those commands that are unique to Interface Builder are
listed; for information on commands that are common to all OpenStep
applications see Using the OpenStep Desktop.

Commands in the Document Menu

These commands act to open, create, save, or test an Interface Builder
document. (Interface Builder documents are generally referred to as “nib files,”
since that is how they are stored on disk. However, until a document is saved,
no file exists, so referring to the document as a “nib file” is not strictly correct.
Even so, for simplicity, Interface Builder documents are referred to as nib files
throughout, unless to do so would cause confusion.)

Table 3-9 Document Menu Commands

Command Description

Open Opens an existing nib file.

New Application Creates a new Interface Builder nib file containing the basic
components of an application: a main menu, a standard
window, and other resources. You rarely use this command
since it is generally more convenient to have Project Builder
create the nib file for a new application. See the description of
Project Builder’s New command in “Commands in the Project
Menu” on page 2-33 for more information.

New Module Opens the New Module submenu, which offers commands for
creating various sorts of Interface Builder nib files other than
the type used for an application’s main nib file. See
“Commands in the New Module Submenu” on page 3-172 for
more information.

Save Saves the current nib file. You can edit more than one Interface
Builder nib file at a time. Each open nib file is represented by a
File window. The File window that has main or key window
status identifies the current nib file.

Save As Saves the current nib file under a different file name.

3-172 OpenStep Development Tools—September 1996

3

Commands in the New Module Submenu

These commands let you create auxiliary nib files of various sorts. (The main
nib file is generally created by Project Builder.)

Save All Saves all open nib files.

Revert to Saved Restores the current nib document to the state represented in
the nib file. All changes made since the file was last saved are
lost.

Test Interface Puts Interface Builder in test mode. When you choose this
command, Interface Builder’s supporting windows disappear,
leaving only those windows that belong to your application.
You can then test the operation of the objects in your
application. See ““Testing the Interface” on page 3-136 for more
information.

Table 3-10 New-Module Menu Commands

Command Description

New Empty Creates the simplest sort of nib file, one that includes references
only to a File’s Owner object and a First Responder object.

New Info Panel Creates an auxiliary nib file containing a panel that is
preconfigured as a standard Info panel.

New Attention
Panel

Creates an auxiliary nib file containing a panel that is
preconfigured as a standard Attention panel.

New Inspector Creates an auxiliary nib file containing the components you
need when creating an inspector for a custom palette project.

New Palette Creates an auxiliary nib file containing the components you
need for a custom palette project. You rarely issue this
command directly, since Project Builder provides this nib for
you when you create a new palette project.

Table 3-9 Document Menu Commands (Continued)

Command Description

Working with Interface Builder 3-173

3

Commands in the Edit Menu

Except for the Set Name command, this menu contains the standard editing
commands: Cut , Copy, Paste , Delete , and Select All . These commands
work in the expected ways.

Commands in the Format Menu

This menu lets you set the font and formatting attributes of the selected object.
It also gives you access to the Group submenu, the Align submenu, the Sixe
submenu, and the Page Layout panel.

Table 3-11 Edit Menu Commands

Command Description

Enter selection Highlights te name of the selected object in the outline mode of
the nib file window’s Instances display. To use this command,
select an object in the interface, then choose Enter Selection. The
appropriate object line in the outline mode is highlighted. This
command is useful when you are using outline mode and you
want to know which line in the outline mode represents a
particular object in the interface.

Set Name Displays a panel that lets you set the name of the selected
object. With this name, and the NSGetNamedObject()
function, you can access objects by name within your
application. However, it is generally a better idea to access
objects through the use of outlets, since outlets can be
connected and disconnected in Interface Builder, eliminating
the need to alter your application’s code.

3-174 OpenStep Development Tools—September 1996

3

Table 3-12 Format Menu Commands

Command Description

Font Opens the Font submenu. Interface Builder’s use of the Font
submenu is entirely standard. By setting the font of an
NSTextField or the NSText object within the NSScrollView (for
example), you are determining which font the user will use in
those objects when the application runs.

Text Opens the Text submenu. Interface Builder’s use of the Text
submenu is entirely standard. By setting the text alignment or
tab settings of an object in Interface Builder, you are
determining the alignment and tab settings for those objects at
run time. Note that the ruler commands work only with a Text
object that is the document view of an NSScrollView.

Bring To Front Establishes the selected object as the frontmost object in the
window. If the selected object intersects other objects, the
selected one is drawn over the others. If more than one object
is selected when you choose this command, the entire group of
objects is brought in front of all other objects in the window.

Send To Back Puts the selected object or objects behind all other objects in the
window.

Group Opens the Group submenu, which is described in “Commands
in the Group Submenu” on page 3-175.

Align Opens the Align submenu, which is described in “Commands
in the Align Submenu” on page 3-175

Size Opens the Size submenu, which is described in “Commands in
the Size Submenu” on page 3-177

Page Layout Opens the standard Page Layout panel. This panel lets you
specify how the window you print using Interface Builder’s
Print command will appear on paper. Since a screen pixel is
approximately 75 percent of the size of a printer pixel, the
image of a window looks larger on paper than it does on the
screen. To compensate, set the scaling factor to 75 percent in
the Page Layout panel’s Scale field.

Working with Interface Builder 3-175

3

Commands in the Group Submenu

This menu offers commands that help you group the selected object or objects.

Commands in the Align Submenu
This menu provides commands that let you position objects accurately within a
window.

Table 3-13 Group Submenu Commands

Command Description

Group Puts the selected object or objects behind all other objects in the
window.

Group in
ScrollView

Groups the selected object or objects in an NSScrollView. The
NSScrollView is sized so that it just accommodates the objects
in the group. The grouped objects are made subviews of the
NSScrollView.

Group in SplitView Groups the selected objects within an NSSplitView object. The
objects become subviews of

Ungroup Removes the grouping established by the Group or Group in
NSScrollView commands.

3-176 OpenStep Development Tools—September 1996

3

Table 3-14 Align Submenu Commands

Command Description

Set Grid On / Off Enables and disables the alignment grid in all windows of all
open nib files. When the grid is enabled, View objects dragged
into a window are constrained in their location and dimensions
to the units defined by the grid.

By default, the intersections of the grid are aligned, both
vertically and horizontally, on every eighth pixel in a window.
Also by default, an object’s lower left corner is the reference
point for alignment with the grid. (The grid spacing and the
object’s reference point can be changed using the Alignment
panel.)

By default, the intersections of the grid are aligned, both
vertically and horizontally, on every eighth pixel in a window.
Also by default, an object’s lower left corner is the reference
point for alignment with the grid. (The grid spacing and the
object’s reference point can be changed using the Alignment
panel.)

Show Grid / Hide
Grid

Displays and hides the alignment grid in all windows of all
open nib files. The grid is displayed as a rectangular array of
dark gray dots.

Align To Grid Aligns the selected objects to the nearest grid mark. To use this
command, first select one or more objects by dragging around
them or by Shift-clicking on them..

Working with Interface Builder 3-177

3

Commands in the Size Submenu
This menu’s commands allow you to resize an object.

Commands in the Tools Menu

This menu’s commands open or bring to the front the named panel

Make Row Aligns the selected objects horizontally. The row extends to the
right of the selected object that is nearest the top left corner of
the window. The spacing between objects is determined by the
original spacing between the two objects nearest the window’s
top left corner. If these objects originally overlapped, the
objects in the resulting row abut each other.

Make Column Aligns the selected objects vertically. The column forms below
the object that is nearest the top left corner of the window. The
spacing between objects is determined by the original vertical
spacing between the two objects nearest the window’s top left
corner. If these objects originally overlapped, the objects in the
resulting column abut each other.

Alignment Opens the Alignment panel, which is described in the “Using
the Alignment Panel” on page 3-45.

Table 3-15 Size Submenu Commands

Command Description

Size to Fit Resizes the selected object to the minimum size required to
display its contents. If more than one object is selected, each is
resized to its own minimum size. For an object of a given class,
minimum size may depend on the font used to display the title,
the alignment and location of the title, and the distance the
content area is offset from other areas of the object.

Same Size Forces one or more selected objects to assume the dimensions
of another selected object. The first object you select establishes
the dimensions that the other selected objects will assume.

Table 3-14 Align Submenu Commands

Command Description

3-178 OpenStep Development Tools—September 1996

3

.

Commands on the Palettes Submenu

This menu provides commands that let you open, create, save, and close
palettes

Table 3-16 Tools Menu Commands

Command Description

Colors Displays the Colors panel.

Inspector Displays the Inspector panel.

Palettes Opens the Palettes submenu, which is described in
“Commands on the Palettes Submenu” below.

Help Builder Displays the Help Builder panel. This panel will be empty
unless your application is part of a project containing a Help
directory. See “Attaching Help to Objects” on page 3-132 for
information on using the Help Builder panel.

Table 3-17 Palettes Menu Commands

Command Description

Open... Presents an Open panel, enabling you to load additional
palettes into Interface Builder's Palette window. See "Adding
Custom Palettes, Inspectors, and Editors" on page 3-71 for more
information.

New Creates a dynamic palette. The Plette window will display a
blank palette, to which you can add objects from your interface.

Dynamic palettes do not have a palette project associated with
them, and they do not have to be compiled.

Palettes... Displays the Palette window. You can always access the four
standard palettes using the palette window. You can also load
nonstandard palettes into the window using the Open
command on the Palettes menu.

4-1

Using Edit in Developer Mode 4

In addition to the standard UNIX editing tools (vi and Emacs), the OpenStep
development environment provides a mouse-based text editor named Edit for
creating and editing ASCII or RTF (Rich Text Format) text files.

Edit has all the standard features of a text editor: You can type paragraphs of
text without pressing the Return key (the text wraps automatically at the end
of each line, and if you change fonts or resize the window, the text rewraps
accordingly). You can use the mouse to select where text will be entered and to
select text you want to edit. And you can find and replace text, move and copy
it, and so on.

While Edit has the functionality of a good text editor, it is particularly suited
for writing programming code and performing other application-development
tasks. It lacks many of the capabilities found in similar applications, but in
Developer Mode it has many features specifically designed for programmers.
For example, Edit supports name expansion, folder browsing, block nesting in
program listings, and a structured editing facility. It also provides
interapplication functionality with Project Builder and Terminal.

Starting Edit
You can start Edit from the workspace as you would start any other
application. Alternatively, you can start Edit from a shell window by typing
the following command at the UNIX prompt:

/usr/openstep/Apps/Edit.app/Edit [file name ...] &

4-2 OpenStep Development Tools—September 1996

4

Several command-line options allow you to override various default
characteristics of Edit for the work session you are about to
start—characteristics such as the number of lines and columns in new
windows, the font family used, and the font size. For example:

/usr/openstep/Apps/Edit.app/Edit -NSFont Times-Roman Fruit.m &

These command-line options can be specified in any order, as long as they
precede any file names. Several options are listed in Table 4-1.

Edit will use the default value for each option unless you override it with a
command-line option. The value specified in the command line will remain in
effect only for the work session you are about to start. The next time you use
Edit, the defaults go back into effect.

Table 4-1 Edit Command-line Options

Option Effect

IndentWidth Specifies the width of indentation for block nesting. The default
value is 4.

NSFont Specifies the font family. The default font is Helvetica.

NSFontSize Specifies the font size, in points. The default value is 12.

Tags Specifies one or more path names to tags files that will be
searched by the Source command. The path names should be
separated by a colon, as in a standard UNIX path list. The
default is “tags,” which indicates that the tags file in the
current folder will be searched. See the description of using
tags files under “Interacting with UNIX” on page 4-21 for more
information about using tags files in Edit.

DeleteBackup Specifies whether the previous version of a file is deleted or
retained as a backup when you save changes to the file. The
default value is YES, which means that the previous version is
deleted. If the previous version is saved as a backup, its name
is the same as the original file name, but with a tilde (~)
appended to the name.

NSMenuX Specifies the (positive) distance in pixels from the left edge of
the screen to the left edge of the main menu.

NSMenuY Specifies the (positive) distance in pixels from the bottom of the
screen to the top of the main menu.

Using Edit in Developer Mode 4-3

4

You can set new default values for each of the above characteristics (except for
screen coordinates) using the Preferences panel, which is described in the
“Setting Preferences.” Most defaults set with the Preferences panel remain in
effect until you change them.

Setting Preferences
The Preferences command in the Info menu displays the Preferences panel,
shown in Figure 4-1. The Preferences panel lets you set default values for
various Edit options. For example, you can set default font properties or
specify the size of new windows. To use the features of Edit’s Developer
Mode, click on the Developer Mode radio button as shown in Figure 4-1.

Figure 4-1 Edit Preferences Panel

4-4 OpenStep Development Tools—September 1996

4

Enter values and click on buttons to specify new preferences, as described
below. Then click on Set to set the new preferences (or click on Revert to
restore the previous settings). In general, the new settings remain in effect
until you change them. However, you can temporarily override some of the
defaults by starting up Edit from a shell window and specifying one or more
command-line options (as described in “Starting Edit” on page 4-1).

You can press the button labeled User Options and, in the pop-up list that
appears (see Figure 4-2), choose from several other sets of options that are
available (see “Global Options” on page 4-6, “Temporary Settings” on page 4-7,
“Text Options” on page 4-8, and “C Options” on page 4-11).

Figure 4-2 Options Pop-up List

User Options

Choose User Options in the Preferences panel’s pop-up list to see the user
options that you can specify. User options are saved in your defaults database
and continue to be used until you specify different values for them.

Start-up Options

Figure 4-3 shows Edit’s start-up options. By default Edit starts in User mode,
which presents just a subset of the commands available in Developer mode. If
you are using Edit for application development be sure to click on the
Developer Mode button.

Figure 4-3 Edit Start-up Options

Using Edit in Developer Mode 4-5

4

New Document Format Options

Figure 4-4 shows the new document format options. Click on one of the radio
buttons to specify whether new documents are created in RTF (Rich Text
Format) or ASCII format.

After you have created or opened a document, you can change its format by
choosing the Make Rich Text command or the Make ASCII command in the
Text menu.

Figure 4-4 New Document Format Options

Default Font for RTF Files

Figure 4-5 shows the field that allows you to set a default font for Edit
windows that are in RTF format. Click on the Set button to bring up the Font
panel. Specify the font family, typeface, and size, and click on the Set button in
the Font panel when you are finished. After you save these settings, all
subsequently created RTF documents display text in the specified font by
default.

Figure 4-5 RTF Default Font

Default Font for ASCII Files

Figure 4-6 on page 4-6 shows the field that allows you to set a default font for
Edit windows that are in ASCII format. Click on the Set button to bring up the
Font panel. Specify the font family, typeface, and size, and click on the Set

4-6 OpenStep Development Tools—September 1996

4

button in the Font panel when you are finished. After you save these settings,
all subsequently opened Edit windows that contain ASCII files display text in
the specified font.

When working with code or UNIX command output, it is best to use a fixed-
width font family, such as Courier.

Figure 4-6 ASCII Default Font

Global Options

Choose Global Options in the Preferences panel’s pop-up list to see the global
options that can be specified. Global options are saved in your defaults
database and continue to be used until you specify different values for them.

Save Options

Figure 4-7 shows the save options that determine what happens when you save
a file. When you select the Delete backup file option, Edit automatically deletes
the previous version of a file when the current version is saved. Click on Don’t
delete backup file to retain the previous version of a file when you save the
current version (if the previous version of a file is saved). This backup file is
saved under the original file name, but with a tilde (~) appended to the name.

If you try to save a file that is write-protected, you can do so by responding
affirmatively to the confirmation panel that appears as long as you own the
file. Check the Save Files Writeable button if you want such write-protected
files to lose their write-protected status when they are saved.

Figure 4-7 Save Options

Using Edit in Developer Mode 4-7

4

Default Window Size Options

Figure 4-8 shows the options that let you ser a default size for Edit file
windows. Enter a width in number of characters in the Width field and a
height in number of lines in the Height field. Edit files that you open after
saving these settings are displayed in windows with the dimensions you
specify. Since these dimensions are specified in characters and lines, the
default window sizes are affected by the default font.

Figure 4-8 Default Window Size Options

Emacs Key Bindings

Figure 4-9 shows the options for Emacs key bindings. Click on one of the radio
buttons to specify whether or not Emacs key bindings are enabled.

Figure 4-9 Emacs Key Bindings Options

Temporary Settings

Choose Temporary Settings in the Preferences panel’s pop-up list to see
the temporary settings that can be specified. These are called temporary
settings because they are not saved in your defaults database.

4-8 OpenStep Development Tools—September 1996

4

Line Wrap Options

Figure 4-10 shows the options that determine how text wraps. When you select
the Word boundaries option, text wraps onto the following line at the end of
each full line, but no words are split across lines. Clicking on Character
boundaries also causes text to be wrapped at the end of each line, but words
can be split across lines. Clicking on Don’t wrap causes text to not wrap at all.

Figure 4-10 Line Wrap Options

Rich Text Display Options

Figure 4-11 shows the options for how RTF files are displayed. When you select
the Edit Rich Text Format option, RTF files that you open are displayed as
formatted text. Click on Ignore Rich Text Format to view RTF files as
unformatted text with the format commands visible. Because other
applications use Edit to view formatted text, you should normally leave the
Edit Rich Text Format option selected.

Figure 4-11 Rich Text Display Options

Text Options

Choose Text Options in the Preferences panel’s pop-up list to see the text
options that you can specify. Text options are saved in your defaults database
and continue to be used until you specify different values for them.

Using Edit in Developer Mode 4-9

4

Automatic Indenting Options

Figure 4-12 shows the options that determine whether or not lines are
automatically indented. When you select the Automatically indent lines
option, Edit indents each new line the same as the line above it (automatic
indentation is useful for typing indented lines of code). Click on Don’t auto-
indent lines if you want each new line to start at the left margin.

Figure 4-12 Automatic Indenting Options

Structure Level of Blank Lines

Figure 4-13 shows the options that determine how blank lines are treated in
your text structure. When you select the Same as previous line option, Edit
assigns each “blank” line (that is, each line that contains no visible text) the
same structure level as the previous line. Click on Determined by indentation
if you want the structure level of blank lines to be determined by the amount
of indentation (that is, tabs and spaces) on that line, rather than by the
indentation of the previous line.

Figure 4-13 Structure Level of Blank Lines in Text Options

Alignment Options

Figure 4-14 on page 4-10 shows the alignment options for text. In the Indent
field, enter the number of characters you want to shift right or left with the
Text menu’s Nest and Unnest commands. In the Tabs field, enter the number
of characters you want between tab stops.

4-10 OpenStep Development Tools—September 1996

4

Figure 4-14 Alignment Options

Open at Structure Level Options

The options shown in Figure 4-15 determine how many levels of structure will
be visible in a newly opened files. In the ASCII and RTF fields, enter a number
between 0 and 99 to specify how many levels will be visible in a file of that
type. A 0 indicates that only the top level of text, text that is flush left, will be
visible; a 1 indicates that the first sublevel of text should also be visible, and so
on.

Figure 4-15 Open at Structure Level Options

Editing Modes

In addition to the default Text mode, there are two editing modes for C and
Lisp source files, shown in Figure 4-16. These modes optimize some minor
aspects of Edit’s behavior for use with each of these programming languages.
You can specify in the Modes field any additional file extensions that you want
associated with either of these two modes.

Figure 4-16 Editing Modes File Extensions

Using Edit in Developer Mode 4-11

4

C Options

Choose C Options in the Preferences panel’s pop-up list to see the C source
code options that you can specify. C options are saved in your defaults
database and continue to be used until you specify different values for them.

Structure for Top Level

Figure 4-17 shows the options that determine how the commands in the
Structure submenu operate on top-level text. When you select the Independent
of 1st character option, commands in the Structure submenu operate solely on
the basis of indentation, independent of particular characters. Click on
Determined by 1st character if you want Structure submenu commands to treat
C preprocessor directives (lines whose first character is #) specially—that is, as
second-level text, rather than top-level tezt.

Figure 4-17 Structure for Top Level Options

Structure Level of Blank Lines

Figure 4-18 determines how blank lines are treated in your C source code
structure. When you select the Same as previous line option, Edit assigns each
“blank” line (that is, each line that contains no visible text) the same structure
level as the previous line. Click on Determined by indentation if you want the
structure level of blank lines to be determined by the amount of indentation
(that is, tabs and spaces) on that line, rather than by the indentation of the
previous line.

Figure 4-18 Structure of Blank Lines in C Code Options

4-12 OpenStep Development Tools—September 1996

4

Tags Path

Figure 4-19 shows the field that lets you specify one or more tags files that
you want Edit to search when you choose the Source command in the Utilities
menu. In the Path field, enter the path names of the files you want searched. A
tags file, which you create using the UNIX ctags command, contains the
locations of program object definitions among a given group of files. The
Source command searches the tags files specified here for the location of an
object definition and then opens the file containing the definition.

If you leave the default entry of tags:../tags in this field, Edit searches only
the main window) and in the current folder’s parent folder. You can replace or
add to the default, however, by entering the path names of one or more other
tags files; you separate multiple path names with a colon as in a standard
UNIX path list.

See the description of the Source command in “Commands in the Utilities
Menu” on page 4-31 for more information about using Edit’s Source command
with tags files.

Figure 4-19 Tags Path

Include Path

Figure 4-20 on page 4-13 shows the field in which you can specify your default
include path (the path the preprocessor uses to search for system header files).
You can redefine this path by editing the text and then clicking on the Set
button.

Using Edit in Developer Mode 4-13

4

Figure 4-20 Include Path

Performing Basic Operations
For information about basic operations of Edit that are available in both User
mode and Developer mode, see the following sections in Using the OpenStep
Desktop:

• Selecting Text

• Deleting and Replacing Text

• Finding Text

• Replacing Text that You Find

• Checking Your Spelling

• Setting Margins, Indentation, and Tabs

• Checking Your Spelling

For more information about basic operations common to Edit and other
standard OpenStep applications, see Using the OpenStep Desktop.

Opening Edit Files
In addition to opening Edit files from the workspace, you can open them from
within Edit by using the Open or Open Selection commands in the File menu.
(These commands are described in “Commands in the File Menu” on
page 4-25.)

An alternate way to open one or more files is to use Edit’s openfile
command at the UNIX prompt in a shell window. You can specify one or more
file names (or path names), which are interpreted relative to the shell

4-14 OpenStep Development Tools—September 1996

4

window’s current folder. For example, the following command would open all
the files in the current folder that end with a .c extension, plus all the files in
a subfolder called headers that end with a .h extension:

openfile *.c headers/*.h

Each file is opened in its own Edit window. You can use the openfile
command only when Edit is running.

Using File Windows and Folder Windows
Edit provides two types of standard windows: file windows and folder windows.
As in other applications, there are also panels and menus.

Note – Unless otherwise specified, folder windows mentioned in this chapter
are Edit folder windows, not Workspace Manager folder windows.

An Edit file window displays a document file that you can view and edit.
When you make changes to text displayed in a file window, the version of the
file on the disk is not affected until you save the file with the File menu’s Save
command. When a file contains unsaved changes, the window’s title bar
displays a partially drawn close button. If you miniaturize a window
containing unsaved changes, its miniwindow is highlighted in gray.

An Edit folder window displays a list of the files and subdirectories contained
in a folder. You do not edit the contents of a folder window; instead, you use
the displayed folder listing to find and select other files or directories to open.

Two special features are available in Edit folder windows:

• You can type a character to find and select the first item starting with that
character. Each additional character you type deselects the previously
selected item and finds the first item starting with the newly typed
character. You can also use the commands in the Find submenu to find and
select items in a folder window.

• You can double-click a file or folder name to open an Edit window
displaying that file or folder. This is equivalent to selecting the name and
choosing the Open Selection command in the File menu.

You can also open an Edit folder window by choosing the Open Folder
command in the File menu. The command displays a panel in which you enter
the path name of a folder to be opened.

Using Edit in Developer Mode 4-15

4

Contracting and Expanding Text in a File Window
In Developer Mode, Edit provides a Structure capability that lets you quickly
move around in C files as well as in any other type of file where levels of
structure are represented by varying degrees of indentation—outlines, for
example. Commands in the Structure menu can be used to “contract” text in
the main window, displaying only the text at a particular level of indentation.
Text that is indented beyond that level is hidden. Figure 4-21 shows a
document that has been contracted—only the top-level lines (those that are
flush left) are visible. Notice the two white text arrows, which indicate the
presence of contracted text.

Figure 4-21 File Window with Only First-Level Text Expanded

When text is contracted, only the display is changed—the document itself,
including font changes and text properties, remains unchanged. However,
while some Edit commands affect both the expanded and the contracted
portions of the document (for example, Cut and Paste), other commands affect
only the portions of the document that are expanded (for example, commands
that change the font).

Commands in the Structure submenu let you expand or contract either the
entire contents of the window, or just the current selection. The rest of this
section describes some mouse shortcuts that you will probably use even more
frequently than the menu commands.

These arrows
indicate the
locations of
contracted text.

4-16 OpenStep Development Tools—September 1996

4

Clicking on a text arrow expands (that is, displays) the text that the arrow
represents. Control-clicking on a text arrow expands just the top level of the
text that the arrow represents. For example, Figure 4-22 shows what the
drawSource definition looks like after Control-clicking on the first of the two
text arrows shown in Figure 4-21. Notice that the drawSource definition has
expanded, but the drawDestination definition is still contracted. Also notice
that the drawSource definition has not expanded completely—the switch
statement contains yet another level of contracted text.

Figure 4-22 File Window with Some Second-Level Text Expanded

Figure 4-23 on page 4-17 shows the drawSource definition after Control-
clicking on the switch statement’s text arrow. Each case statement in the
switch contains an additional level of contracted text. The text for CIRCLE,
however, is not contracted—it has already been expanded by clicking (or
Control-clicking) on its text arrow.

Using Edit in Developer Mode 4-17

4

Figure 4-23 File Window with Some Third-Level Text Expanded

If you want to recursively expand all the sublevels of text represented by a text
arrow, click on, instead of Control-clicking on, the arrow.

Control-clicking anywhere within an indented block of text contracts the text.

Adding Help Links
The Help menu in Edit provides commands that are used to add or edit Help
links. Although Help links are designed for use within an application’s on-line
Help system, they can also be used more generally. For example, the Contents
file for the release notes could contain links to the various release note files. For
information about adding a Help system to an application you are developing,
see “Commands in the Project Menu” on page 2-33 and “Attaching Help to
Objects” on page 3-132.

4-18 OpenStep Development Tools—September 1996

4

To work with Help links and markers, use the following commands in the
Help menu (choose the Help command in the Format menu):

• Choose Insert Link to insert a Help link at the current insertion point. In the
Link Inspector that appears, specify the name of a file and (optionally) a
marker in that file.

• Choose Insert Marker to insert a Help marker at the insertion point in the
main window. A Marker panel appears in which you specify a name to
associate with the marker. When you insert a link to the marker, you will
identify it by this name.

• Choose Show Markers to show all the markers in the main window, or Hide
Markers to hide them.

If you want to edit a link or marker you have created, Command-click on it to
bring up the Inspector panel. To delete a link or marker, select it and press the
Delete key, just as you would with text.

Using Templates
Three commands on the Expert menu—Expansion Dictionary, Insert Field, and
Next Field—let you create and use text string abbreviations. Text string
abbreviations are abbreviations for commonly used text strings or templates
that you can type and then expand into the full text entry with a single
keystroke.

To define a text string abbreviation, open the Expansion Dictionary panel by
choosing Expansion Dictionary in the Expert menu.

Using Edit in Developer Mode 4-19

4

Figure 4-24 Expansion Dictionary Panel

In the Key field at the top of the panel, enter an abbreviation for the text string
or template. In the Expansion field at the bottom of the panel, enter the
expanded text that you want the abbreviation to represent. Then click on the
Add button. The new abbreviation appears on the list in the middle of the
panel.

If you want the expansion to occupy more than one line, press Alt-Return to
insert Return characters between lines in the Expansion field. When you press
Alt-Return, the line of expanded text you just typed disappears from the field,
leaving room to type the next line.

To use a text abbreviation, set the Key Bindings On option in the Emacs Key
Bindings field of Global Options in the Preferences panel (see “Global Options”
on page 4-6), type the abbreviation in a document, and then press the Escape
key; the abbreviation is replaced by its expansion. For example, if you

4-20 OpenStep Development Tools—September 1996

4

frequently need to type setOutputForm , you could use the Expansion
Dictionary command to associate the abbreviation sof with the longer
declaration. To enter setOutputForm , you would only have to type sof and
press Escape. The abbreviation does not even have to be typed in full for the
expansion to occur, as long as what you do type refers unambiguously to a
glossary entry.

If you are using the Expansion Dictionary window to create a template
containing fields you will be editing after the text is expanded, surround each
field with European quotation marks («»), as described below. For example:

Subject: «subject»
To: «recipient»
cc: «cc»»

«message»

You can enter European quotation marks in the Expansion field by choosing
the Insert Field command, or you can enter them directly from the keyboard by
pressing and releasing the Compose key and then typing Shift-<-<, then
pressing and releasing the Compose key and typing Shift->->. After inserting
the template into a document, you can quickly find each editable field by
choosing the Next Field command, which positions the insertion point at the
next field in the template.

Figure 4-25 Add Button

After entering the abbreviation and the expanded text it stands for in the Key
and Expansion fields, click on the Add button to accept the new glossary entry.

Figure 4-26 Remove Button

To remove a glossary entry, type its abbreviation in the Key field and click on
the Remove button.

Using Edit in Developer Mode 4-21

4

Using Keyboard Editing Commands
In addition to letting you edit text using menu commandsand their keyboard
equivalents, Edit also supports several Emacs-style editing commands that can
be typed from the keyboard. Table 4-2 lists the key combination corresponding
to each of these commands and a description of what the command does.

Interacting with UNIX
Edit provides some useful commands for using UNIX utilities from within
Edit. These include the following:

• Two commands for piping output from UNIX commands directly into Edit
files

• A Source command that you can use with one or more tags files to locate
program objects in a group of files

Table 4-2 Keyboard Editing Commands

Command Action

Control-B Moves back one character

Control-F Moves forward one character

Alt-b Moves back one word

Alt-f Moves forward one word

Control-A Moves to beginning of line

Control-E Moves to end of line

Control-D Deletes next character

Control-H Deletes previous character

Alt-d Deletes to end of current (or next) word

Alt-h Deletes to beginning of current (or previous) word

Control-K Deletes forward to end of line

Alt-< Moves to beginning of text

Alt-> Moves to end of text

Control-N Moves down one line

Control-P Moves up one line

4-22 OpenStep Development Tools—September 1996

4

Piping UNIX Output to a File

Edit lets you pipe the output of a UNIX command directly into an Edit
window. This is a useful technique for inserting output from other
applications into your own programs.

For example, to produce a 1996 calendar in an empty window, choose
Command in the Utilities menu, enter the following in the panel that appears,
and press Return:

cal 1996

The output appears in an untitled window.

If instead you wanted the calendar to appear in the main window, position the
insertion point where you want the calendar to appear (or select what you
want it to replace). Then choose Pipe in the Utilities menu. Enter the same
command as before and press Return. This time the output appears in the
main window at the insertion point or in place of the current selection.

You can also use the Pipe command to manipulate the current text selection
with another UNIX program. If the command accepts input, the selection will
be used as input—for example, you could sort the selection with the sort
command.

If there are Command and Pipe commands that you use frequently, you can
define them as menu items in the User Commands and User Pipes submenus
in the Utilities menu. To do this, enter a definition for each command in a file
named .openstep/ .commanddict or .openstep/.pipedict in your home
folder.

Each command definition contains at least two fields, separated by tabs:

command name<tab>command definition

For example, the following entry defines a Pipe command called Sort
Selection , which runs the UNIX sort command using the current selection
as input:

Sort Selection sort -

One additional field, inserted between the two required fields and separated
from them by tabs, can be used to specify a keyboard alternative for the
command. For example, this definition of the Sort Selection command
assigns to it the keyboard alternative Command-5:

Using Edit in Developer Mode 4-23

4

Sort Selection 5 sort -

If you make changes to your .commanddict or .pipedict file while Edit is
running, you must quit and restart Edit in order for your changes to appear in
the User Commands or User Pipes menu.

You can use two special variables, shown in Table 4-3, as arguments to the
UNIX commands you specify:.

Here are some examples of how these variables might be used in a
.commanddict definition:

Print Two Up P enscript -2r $file
GrepAppkit A fgrep -n "$selection" /usr/include/appkit/*.h

The first example prints the contents of the file that is displayed in the main
window. The second example searches for occurrences of the selected text in
the Application Kit header files.

Using a Tags File

If you are maintaining a large number of files as part of a programming
project, you can use Edit’s Source command with a tags file to quickly locate
the definition of an object in that group of files. A tags file (which you create
with the UNIX ctags command) lists the locations of program objects (such as
functions, procedures, global variables, and typedefs) that are in a specified
group of files.

To locate an object definition, simply select it and choose Source (or choose
Source and type the object name in the panel that appears). Edit searches one
or more tags files for the location of the object definition and then opens the
file containing the definition. Normally, Edit searches the tags file in the
current folder (the folder containing the file in the main window). However,

Table 4-3 Arguments for UNIX Commands

Argument Meaning

$file Refers to the file that is displayed in the main window (which may
be different from the contents of the window).

$selection Refers to the contents of the current selection, which can be either
text that is selected in a file window, or a file that is selected in a
folder window

4-24 OpenStep Development Tools—September 1996

4

you can specify other tags files to be searched either with the Preferences
command or by specifying the Tags option when starting up Edit from a
shell window.

More information on tags files is given in the ctags UNIX manual page. For
more information on using the Source command, see the command description
in “Commands in the Utilities Menu” on page 4-31.

Edit Command Reference
The following sections summarize the menus and commands available in Edit.

Commands in the Main Menu

Edit’s main menu contains the standard Info, Print, Windows, Services, Hide,
and Quit commands. The other commands and the submenus they open are
described in the sections that follow. Several standard commands are
discussed here only in terms of their particular use in Edit.

Using Edit in Developer Mode 4-25

4

Commands in the File Menu

Edit’s File menu contains the standard Open, New, Revert to Saved, and Close
commands. The other commands are described in Table 4-4.

Table 4-4 File Menu Commands

Command Description

Save, Save As, Save
To,Save All

These are the standard commands for saving the contents of
the main window on the disk.

When you save a file, Edit first moves the contents of the old
version to a temporary backup file, which has the same name
as the previous file but with a tilde (~) appended to it (for
example, the backup file corresponding to Fruit.m would be
Fruit.m~).

Next, Edit writes the new version of the file and then it
normally deletes the backup file. If something happens that
prevents Edit from saving the file, however, the backup file
remains so you can recover its contents. Or, if you always want
the backup file to remain, even after the new version is
successfully saved, you can set the Don’t delete backup file
option in the Preferences panel.

While the file is being saved, saving: appears before the file
name in the title bar of the window (in the case of small files, it
appears only for an instant). Until saving: has disappeared,
do not use the file (for example, do not try to compile or copy
it).

Open Selection Opens the file or folder currently selected in the main window.
Normally, you use this command on a selection in a folder
window. However, it also works on selected text in a file
window. The selected text must be either a full path name, or a
file name or path name relative to the current folder (the folder
containing the file in the main window).

Open Folder Displays a panel in which you enter the path name of a folder
to be opened. When you click on OK, the folder opens in an
Edit folder window. When the panel appears, Edit displays the
name of the current folder in the Folder name field.

4-26 OpenStep Development Tools—September 1996

4

Commands in the Edit Menu

Edit’s Edit menu contains the standard Cut, Copy, Paste, Delete, and Select All
commands, plus commands for opening the Link submenu and the Find
submenu described in “Commands in the Link Submenu” and “Commands in
the Find Submenu. Other commands are described in Table 4-5.

Commands in the Link Submenu

Edit’s Link submenu provides the commands described in Table 4-6 for
working with linked documents. For more information, see “Adding Linked
Graphics” in Using the OpenStep Desktop.

Table 4-5 Edit Menu Commands

Command Description

Undelete Reinserts the most recently deleted text, even if the text has not
been put on the pasteboard. You can insert the deleted text at a
new location by positioning the insertion point where you
want to insert the text (or selecting text that you want it to
replace) and then choosing Undelete.

Spelling Opens the Spelling Panel for checking the spelling of words in
the main window. See “Checking Your Spelling” in Using the
OpenStep Desktop.

Check Spelling Has the same effect as clicking Find Next in the Spelling
panel—that is, it finds the next word not contained in the
spelling dictionary. See “Checking Your Spelling” in Using the
OpenStep Desktop.

Table 4-6 Link Submenu Commands

Command Description

Paste and Link Pastes a copy of a graphic contained on the pasteboard, but
creates a link to the document that the graphic came from, so
that future changes to the original graphic will affect the copy
in the Edit document as well.

Show Links, Hide
Links

Shows (or hides) whether or not graphics are linked
by displaying a linked chain around the border of each linked
graphic.

Link Inspector Opens the Link Inspector panel.

Using Edit in Developer Mode 4-27

4

Commands in the Find Submenu

Edit’s Find submenu contains the standard Find Panel, Find Next, Find
Previous, and Enter Selection commands. Other commands are described in
Table 4-7.

Table 4-7 Find Submenu Commands

Command Description

Jump to Selection Scrolls the insertion point or current text selection into view.

Line Range Opens a panel that identifies by number the line or line range
containing the current selection in the main window. If the
Character option in this panel is selected instead of the Line
option, then the character range is displayed instead of the line
range.

You can also use the panel to search for a particular line, line
range, character, or character range in the main window. Enter
a number or a range (a range is two numbers separated by a
colon) in the Range field. Click on the Select button to select
that character, line, or range of the file.

4-28 OpenStep Development Tools—September 1996

4

Commands in the Format Menu

The Format menu contains commands for displaying the standard Font and
Text submenus, as well as Edit-specific Help and Structure submenus
(seeTable 4-9 on page 4-29 and Table 4-10 on page 4-30). It also contains the
Page Layout command described in Table 4-8.

Commands in the Font Submenu

The Font submenu contains the standard Font commands, plus a few
additional commands that let you change the font properties of the text
displayed in the main window—for example, the Colors command opens the
standard Colors panel, which you can use to change the color of the selected
text.

In an RTF file, font changes apply to the current selection and are saved when
you save the contents of the window.

In an ASCII file, font changes are applied to the entire contents of the main
window—font changes in non-RTF files are not saved when you save the
contents of the window.

Table 4-8 Format Menu Commands

Command Description

Page Layout Displays the standard Page Layout panel for choosing among
various paper sizes, scaling factors, and orientations for text
printed from the main window.

When you print text that is displayed in a window, the printed
words wrap exactly as theyare wrapped on the screen.
Therefore, if you change the page layout, the width of the
window may also need to be changed in order for the text to
print correctly. Changing the page layout does not affect the
size of the main window, so you need to make this adjustment.

Using Edit in Developer Mode 4-29

4

Commands in the Text Submenu

Edit’s Text submenu contains commands (see Table 4-9) that let you change
properties of the text displayed in the main window. Some of these commands
work only on text in RTF files; use the Make Rich Text command if you want to
change the contents of the main window from ASCII to RTF.

Table 4-9 Text Submenu Commands

Command Description

Align Left, Center,
Align Right

These align the text with the left margin (ragged right), center
it between both margins, or align it with the right margin
(ragged left).

Make Rich Text, Changes the format of the text in the main window from

Make ASCII RTF to ASCII, or vice versa. In an RTF file, font changes and
other text properties (such as superscripting and subscripting)
can be saved as part of the file and displayed along with the
text.

Nest, Unnest These commands help you indent blocks of program code.
Select the program lines you want to indent and then choose
Nest. Each line in the selected program text will be indented
the default amount (four characters, unless you have specified
a different default value in the Preferences panel or overridden
the default when you started up Edit from a shell window).

Unnest moves the selected lines the default number of
characters to the left, thus counteracting the effect of Nest.

Show Ruler, Hide
Ruler

Show Ruler displays a ruler at the top of the main window, and
the Hide Ruler command removes it. With this ruler you can
set margins, tabs, and paragraph indentation. See “Using the
Ruler” in Using the OpenStep Desktop.

4-30 OpenStep Development Tools—September 1996

4

Commands in the Help Submenu

The Help submenu provides the commands described in Table 4-10, which are
used to add or edit Help links. Although Help links are designed for use
within an application’s on-line Help system, they can also be used more
generally (for example, the Contents file for the release notes could contain
links to the various release note files). For more information about working
with Help links and markers, see “Adding Help Links” on page 4-17. For
information about adding a Help system to an application you are developing,
see “Commands in the Project Menu” on page 2-33 and “Attaching Help to
Objects” on page 3-132.

Copy Ruler, Paste
Ruler

Copy Ruler copies the ruler settings of the paragraph
containing the insertion point or the beginning of the current
selection, so that you can subsequently paste them with Paste
Ruler. It is as though there’s a separate pasteboard for the
ruler, and Copy Ruler replaces what is already on it, just as
Copy does for text.

Paste Ruler affects the paragraph containing the insertion point
or the current selection. It replaces the paragraph’s ruler
settings with the last ones you copied with Copy Ruler. If the
current selection spans more than one paragraph, Paste Ruler
replaces the ruler settings of all the selected paragraphs.

These commands do not require the ruler to be showing, and
they do not change the contents of the pasteboard.

Table 4-10 Help Submenu Commands

Command Description

Insert Link Inserts a Help link at the insertion point in the main window.

Insert Marker Inserts a Help marker at the insertion point in the
main window.

Show Markers,
Hide Markers

Shows (or hides) all the markers in the main window.

Table 4-9 Text Submenu Commands (Continued)

Command Description

Using Edit in Developer Mode 4-31

4

Commands in the Sructure Submenu

The Structure submenu provides commands (see Table 4-11) that control
whether certain portions of the text in the main window are expanded (that is,
visible) or contracted (that is, hidden). These commands are useful for
working with files that have a regular multilevel structure, in which the
various levels of structure are represented by varying degrees of indentation;
for example, an outline or Objective C language source code. See “Contracting
and Expanding Text in a File Window” on page 4-15 for a detailed introduction
to this Edit feature.

Commands in the Utilities Menu

Commands in the Utilities menu, described in Table 4-12 on page 4-32, perform
a variety of functions such as providing an interface to the UNIX shell and
looking up information in a UNIX manual page. There are also two
customizable submenus—User Commands and User Pipes—to which you can
add commands that you have defined yourself.

Table 4-11 Structure Submenu Commands

Command Description

Contract All,
Expand All

These contract or expand all the text in the main window.

Contract Sel,
Expand Sel

These contract or expand the selected text in the main window.

4-32 OpenStep Development Tools—September 1996

4

Table 4-12 Utilities Menu Commands

Command Description

Command Displays a panel in which you specify a UNIX command to be
run. The output of the command appears in a window titled
UNTITLED, rather than in the main window.

Two variables can be used as arguments to the UNIX command
you specify:

$file refers to the file that is displayed in the main window.

selection refers to the contents of the current selection,
which must be single file specification (wildcards can be used).
Normally this will be a file that is selected in a folder window.

User Commands Displays a submenu of commands you have defined and saved
in a file named .openstep/.commanddict in your home
folder. Any changes you make to the .commanddict file do
not take effect until the next time you start Edit. The
.commanddict file format is described in “Piping UNIX
Output to a File” on page 4-22.

Pipe Works the same as Command, with one important difference:
The output of the UNIX command that you specify is not
displayed in another window—instead, the output (including
any error messages that might be generated) appears in the
main window at the insertion point or in place of the current
selection.

User Pipes Displays a submenu that contains pipe commands you have
defined and saved in a file named .pipedict in your home
folder. These commands may be similar to commands you
define in the User Commands menu, but the output appears in
the main window at the insertion point or in place of the
current selection, rather than in a separate window.

The .pipedict file format is described earlier in “Piping
UNIX Output to a File” on page 4-22.”

Using Edit in Developer Mode 4-33

4

Source Opens the file containing the definition of the program object
(such as a function, procedure, global variable, or typedef)
selected in the main window. This command searches one or
more tags files for the location of the object definition and
then opens the file containing the definition. Normally, Edit
searches the tags file in the current folder (the folder
containing the file in the main window). However, you can
specify other tags files to be searched either in the Preferences
panel or when starting up Edit from a shell window.

To locate an object definition, select the function name, macro,
or other program object in the file you are working in and
choose Source. Edit opens the file containing the required
information and highlights the first occurrence of the object in
the text. If you choose Source without selecting text, Edit
displays a panel that prompts you to enter the program object
you want defined. If Edit cannot locate the object, it informs
you that no such tags file entry for the object exists. (If this
happens, use the Preferences command to make sure that the
path name of the tags file listing the location of the object is
specified.)

A tags file is a file you create with the UNIX ctags command.
The file lists the locations of specified program objects (such as
functions, procedures, global variables, and typedefs). More
information on tags files is given in the ctags UNIX manual
page.

Manual Displays a UNIX manual page in an Edit window. First select
the manual page subject in the main window and then choose
Manual. If there is no selection, a panel appears prompting
you for an entry.

Match If you select one of a matching pair of delimiters (parentheses,
braces, or square brackets) and choose Match, the pair of
delimiters and the enclosed text become selected. You can also
invoke this command by double-clicking on either of the
delimiters.

Table 4-12 Utilities Menu Commands (Continued)

Command Description

4-34 OpenStep Development Tools—September 1996

4

Commands in the Expert Submenu

The Expert menu provides the advanced commands described in Table 4-13.

Table 4-13 Expert Menu Commands

Command Description

Update Folder Updates the contents of the main window, which must be a
folder window. Folder windows are not automatically
updated, so this command is useful when files in a folder have
been created, deleted, or renamed.

Copy PS Copies the contents of the main window onto the pasteboard as
an Encapsulated PostScript (EPS) image. Once pasted into an
application that accepts EPS images, the pasted copy of the text
can no longer be edited.

Expansion
Dictionary

Opens the Expansion Dictionary panel for managing text
expansion definitions. See “Using Templates” on page 4-18 for
a complete description of this panel.

Insert Field Creates a new field in an expansion template. See “Using
Templates” on page 4-18.

Next Field Moves the insertion point to the next field in an expansion
template. See “Using Templates” on page 4-18.

Close Ancestors Closes all Edit windows associated with each folder that
is neither the main window’s folder nor one of its subfolders.

Close Descendants Closes all Edit windows associated with each folder that is a
subfolder of the main window’s folder. If the main window is
a folder window it will remain open, but if the main window is
a file window it will be closed as well.

5-1

Using Icon Builder to Create
Application Icons 5

The Icon Builder application is a simple yet effective tool—either alone or in
combination with a more powerful drawing application—for creating
application icons. Although Icon Builder itself is not intended to be a
full-featured drawing application, it offers not only integration with other
drawing applications, but also the ability to create and edit multiple-icon
documents.

You can start Icon Builder, which is located in
/usr/openstep/Developer/Apps , from the workspace as you would any
other application—by double-clicking its icon in the workspace. When Icon
Builder starts up, it displays a panel of tools used to edit icon documents.

Creating, Opening, and Saving Documents
When Icon Builder starts, it creates one new Icon Builder window using the
default Preferences settings. You can create additional Icon Builder windows as
you need them, as described in “Creating a New Document” on page 5-2.

5-2 OpenStep Development Tools—September 1996

5

Creating a New Document

To create a new document, choose the New command in the Document menu.
This creates a document with the default attributes. Typically, the document
contains a single 48-pixel by 48-pixel, non-alpha, 2-bit gray image with a white
background. You can change the attributes of the document after it’s been
created, as described in “Changing the Attributes of a Document” on
page 5-17.

To create a new document with nondefault attributes, do the following:

1. Bring up the New Document panel shown in Figure 5-1 by choosing the
New Layout command in the Document menu.

Figure 5-1 New Document Panel

2. Set options in the New Document panel, and then click on OK to create a
new document. If you want to change the default attributes for all
documents created with the New command, click on Set Default instead.

For example, if you want to create an icon for use on both color and black and
white displays, you would check the 2 bit gray box as well as the 12 bit color
box (8 bit gray and 24 bit color could also be used). Check the Has alpha box if
you will be using alpha. (Alpha means transparency, so that some of the

Using Icon Builder to Create Application Icons 5-3

5

background color shows through an image.) To change the background color,
choose Colors on the Tools menu to bring up the Colors panel, pick a color in
the Colors panel, and drag the color into the Background Color color well.

Opening an Existing Document

To open an existing document, choose the Open command in the Document
menu and use the Open panel to find the document.

The document you open may be an icon you are working on, or it may simply
contain an image that you want to copy a selection from in order to paste it
into another document. In addition to TIFF files, Icon Builder can open GIF
and EPS files.

Saving a Document

To save a document to a file, choose the Save command in the Document
menu. If the document has not been saved yet, a Save panel is displayed
prompting you to specify a name and location for the file.

Even if the file you are saving was opened as something other than a TIFF file
(a GIF file, for instance), it will be saved as a TIFF file.

Icon Builder saves TIFF files in uncompressed format, so before making the file
part of your application project, you should use the tiffutil utility to
compress the file. See the tiffutil(1) UNIX manual page for more
information.

Editing Icon Documents
This section describes various ways to edit an icon document, including the set
of Icon Builder tools and an inspector for fine-tuning those tools. Other editing
techniques involve zooming in and out, changing the attributes of a document,
and working with multiple-icon documents.

You can also use standard cut, copy, and paste techniques; these are not
described here.

5-4 OpenStep Development Tools—September 1996

5

Using Icon Builder Tools

A variety of drawing tools are available and accessible from the Tools panel,
shown in Figure 5-2, which is displayed automatically when you start Icon
Builder. If you close or misplace the panel, you can retrieve it by choosing the
Tools command in the Tools menu.

Figure 5-2 Tools Panel

To use a tool, select it by clicking on its icon in the Tools panel. Once you have
selected a tool, use it to edit the contents of the document window.

Note – When using the Tools panel, you should have the Colors panel open as
well. All the drawing tools use the color that is currently displayed in the
Colors panel. You can also use the Colors panel to specify the degree of alpha
coverage (that is, opacity), as well as whether or not painting is done in
overlay mode.

Using Icon Builder to Create Application Icons 5-5

5

The Brush Tool

The Brush tool, shown in Figure 5-3, is useful for filling in large areas with a
particular color. Click once to deposit a brushful of color, or click and drag to
cover a larger surface area.

Figure 5-3 The Brush Tool

The Line Tool

The Line tool, shown in Figure 5-4, draws straight lines. Click to mark the start
point, and drag to the endpoint. The line you see being drawn as you drag is
only for guidance—the final line is drawn only when you release the button.

Figure 5-4 The Line Tool

The Oval Tool

The Oval tool, shown in Figure 5-5, draws circles and ovals. Click and drag to
determine the position, size, and shape. It is hard to predict the startpoint and
endpoint with accuracy, so you may want to use another document window as
a scratch area and then copy and paste the oval once you are satisfied with it.

Figure 5-5 The Oval Tool

5-6 OpenStep Development Tools—September 1996

5

The PaintBucket Tool

The PaintBucket tool, shown in Figure 5-6, changes the color of a contiguous,
identically colored group of pixels. The color to which they are changed is the
color that is currently in the Colors panel. Before using the Paint Bucket tool,
you may want to use the ObeseBits panel to be sure that all the pixels are in
fact identical in color—if minor gradations in color are used to achieve the
appearance of a particular shade, the new color will not spread from pixel to
pixel.

Figure 5-6 The PaintBucket Tool

The Pencil Tool

The Pencil tool, shown in Figure 5-7, draws freehand lines. Click to start the
line, and drag to indicate the path of the line. Unlike the line tool, the Pencil
tool draws the final line as you drag. If you do not like the result, use the Undo
command in the Edit menu to undo it.

Figure 5-7 The Pencil Tool

The Rectangle Tool

The Rectangle tool, shown in Figure 5-8, draws squares and rectangles. Click to
position a corner point, and then drag in any direction to form the rectangle.

Figure 5-8 The Rectangle Tool

Using Icon Builder to Create Application Icons 5-7

5

The Selection Tool

The Selection tool, shown in Figure 5-9, selects a rectangular area for further
editing. For example, after selecting an area you might go on to copy the
selection to the pasteboard, or even delete the selection. You can deselect the
selection by clicking anywhere in the document window.

Figure 5-9 The Selection Tool

The Text Tool

The Text tool, shown in Figure 5-10, is used to add text to an image. If you
select the Text tool and then click the cursor in a document window, the
contents of the TextTool inspector (by default, the word Text—probably not
what you want in your icon) are copied to the cursor location. As long as you
do not release the mouse button you can drag the text to reposition it, but once
you let go the text becomes fixed in that position.

Figure 5-10 The Text Tool

In order to use the Text tool effectively, you should first enter the desired text
in the TextTool inspector. To make changes to the font of the text, choose Font
on the Format menu, and then choose Font Panel from the Font menu. Use the
font panel to set the font attributes and font size as you want. Then use the
Text tool to insert the text in the document window, or—to be on the safe
side—insert the text first in a temporary scratch document, and then cut and
paste the text into the document window.

Other tools besides the Text tool have default attributes that you can change
using the Tools Inspector, as described in “Using the Tools Inspector” on
page 5-8.

5-8 OpenStep Development Tools—September 1996

5

Using the Tools Inspector

The Tools inspector is a panel that gives you greater control over the
characteristics of the tools available in the Tools panel.

To bring up the Tools inspector, choose the Inspector command from the Tools
menu. To display the inspector for a particular tool, click on the tool’s icon in
the Tools panel.

Note – There is no inspector available for the PaintBucket tool.

The Brush Inspector

The Brush inspector, shown in Figure 5-11, is displayed in the Tools inspector
panel when you select the Brush tool in the Tools panel.

Figure 5-11 The Brush Inspector

Click on a button to change the shape and orientation of the brushstrokes you
make.

Using Icon Builder to Create Application Icons 5-9

5

The Line Inspector

The Line inspector, shown in Figure 5-12, is displayed in the Tools inspector
panel when you select the Line tool in the Tools panel. You can use this
inspector to change the width and end shape of the lines you draw.

Figure 5-12 The Line Inspector

Use the slider or the text field to set the line width to any value between 1 and
50 pixels.

Click on one of the three Line Cap buttons to determine how the ends of lines
are drawn. The setting becomes less critical as the line width decreases—a one-
pixel line is drawn the same no matter what style of line cap is selected.

The Oval Inspector

The Oval inspector, shown in Figure 5-13 on page 5-10, is displayed in the
Tools inspector panel when you select the Oval tool in the Tools panel.

5-10 OpenStep Development Tools—September 1996

5

Figure 5-13 The Oval Inspector

Click on one of the five buttons to change the appearance of the circles and
ovals you draw.

The Pencil Inspector

The Pencil inspector, shown in Figure 5-14 on page 5-11, is displayed in the
Tools inspector panel when you select the Pencil tool in the Tools panel. You
can use this inspector to change the width of the freehand lines you draw.

Using Icon Builder to Create Application Icons 5-11

5

Figure 5-14 The Pencil Inspector

Use the slider or the text field to set the line width to any value between 1 and
50 pixels. Thicker lines cause the drawing speed to decrease, so you may need
to move the mouse more slowly in order for the drawing process to keep up
with it.

The Rectangle Inspector

The Rectangle inspector, shown in Figure 5-15 on page 5-12, displayed in the
Tools inspector panel when you select the Rectangle tool in the Tools panel.
You can use this inspector to change the appearance of the squares and
rectangles you draw.

5-12 OpenStep Development Tools—September 1996

5

Figure 5-15 The Rectangle Inspector

Click on one of the seven buttons to change the appearance of the squares and
rectangles you draw.

The Selection Inspector

The Selection inspector, shown in Figure 5-16 on page 5-13, is displayed in the
Tools inspector panel when you select the Selection tool in the Tools panel. You
can use this inspector to change the orientation of (that is, flip or rotate) the
current selection.

Using Icon Builder to Create Application Icons 5-13

5

Figure 5-16 The Selection Inspector

Choose Flip or Rotate in the pop-up list at the top of the panel. The available
options vary depending on which you choose.

If you choose Flip, you will see the Flip filter attributes shown in Figure 5-17.
Click on either the Vertical or Horizontal button to indicate the direction in
which you want the selection to be flipped.

Figure 5-17 Flip Filter Attributes

If you choose Rotate, you will see the Rotate filter attributes shown in
Figure 5-18 on page 5-14. Specify a value between 0 and 360 using either the
slider or the text field. This value represents the number of degrees the
selection will be flipped in a clockwise direction.

5-14 OpenStep Development Tools—September 1996

5

Figure 5-18 Rotate Filter Attributes

Once you have selected the options, click on one of the buttons shown in
Figure 5-19. Click on Apply to flip or rotate the selection. If you do not like the
results, click on Revert to return the selection to its former orientation.

Figure 5-19 Revert and Apply Buttons

The TextTool Inspector

The TextTool inspector, shown in Figure 5-20 on page 5-15, is displayed in the
Tools inspector panel when you select the Text tool in the Tools panel. You use
this inspector to input the text to be inserted in the document window, as well
as to change the font attributes and formatting of the text prior to inserting it.

Using Icon Builder to Create Application Icons 5-15

5

Figure 5-20 The TextTool Inspector

Type the text you want to insert in the document window. Use the Font panel
to set the font attributes and size of the text. You may also want to use
commands in the Text menu to format the text. Then select the Text tool and
click in the document window to insert the text in the document.

Zooming In on a Document

When you are doing detail work on an image that is only 48 pixels across, you
may find yourself wishing you had a magnifying glass. If you start feeling this
way, choose the ObeseBits command in the Tools menu to bring up the
ObeseBits panel shown in Figure 5-21 on page 5-16.

5-16 OpenStep Development Tools—September 1996

5

Figure 5-21 The ObeseBits Panel

This panel magnifies the image in the main window, and lets you zoom in or
out (that is, increase or decrease the degree of magnification). The buttons
along the top of the panel give you the control you need—use the plus and
minus buttons to zoom in or out, and the arrow buttons to change the portion
of the image being displayed.

There are actually two ObeseBits panels, as shown in Figure 5-21. The larger
panel is for editing; the small panel sits over the document window and shows
the exact portion of the image that is contained in the large panel. You can drag
the small panel by its title bar, thereby changing the portion of the image being
displayed in the panel.

The ObeseBits panel associates itself with whatever window is the main
window. Clicking on the document containing the Mail icon in the figure, for
example, would cause the small ObeseBits panel to jump to that document
window. The contents of the big panel would change accordingly.

Using Icon Builder to Create Application Icons 5-17

5

Note – Although the drawing tools in the Tools panel can be used directly in
the ObeseBits panel, the result is not always intuitive. For example, the size of
the Brush cursor does not accurately represent the brush size that’s used when
stroking the brush. Use the Undo command in the Edit menu to undo any
changes that you regret making.

Changing the Attributes of a Document

After you have created a document or opened an existing document, you may
find it necessary to change its size, format, or other characteristics. For
example, you might decide to add alpha (image transparency) to a document
that does not have it.

To make such changes, first click on the document window to make sure it is
the main window. Then open the Document Layout panel by choosing the
Document Layout command in the Format menu.

The Document Layout panel is identical to the New Document layout panel
(see Figure 5-1 on page 5-2). The only difference is that this panel is used to
change the attributes of an existing document, rather than determine the
attributes of a new document.

Note – If you set new default attributes in the Document Layout panel, these
become the default attributes for the New Document layout panel as well.

Working with Multiple-Icon Documents

One Icon Builder document (that is, one TIFF file) can contain more than one
icon. This is typically the case, for example, when you want to have one icon
for color monitors and another for gray-scale monitors—if the two icons are in
the same TIFF file, the appropriate icon is displayed automatically on each
type of monitor, without any work on your part.

To create a multiple-icon document (or to change an existing single-icon
document to a multiple-icon document), select the desired depth settings in the
New Document panel (or the Document Layout panel). Then click on OK.

Use the pop-up list that is displayed in the lower right corner of a multiple-
icon document window to access the various icons.

5-18 OpenStep Development Tools—September 1996

5

If you create a multiple-icon document, remember that you have to edit each
icon. When you save the document, all the icons in the document are
saved—not just the one that is currently visible in the document window.

Icon Builder Command Reference
This section describes the application-specific menus and commands available
in Icon Builder. For descriptions of standard menus and commands, see Using
the OpenStep Desktop.

Commands in the Main Menu

Icon Builder’s main menu contains the standard Edit, Windows, Print,
Services, Hide, and Quit commands. The Document, Format, and Tools
commands display submenus that are described in Table 5-1 and the sections
that follow.

Commands in the Document Menu

Icon Builder’s Document menu provides the commands described in Table 5-2
on page 5-19.

Table 5-1 Icon Builder Submenus

Submenu Description

Document Displays a submenu of commands for creating, opening, and
saving document windows. See “Commands in the Document
Menu.”

Format Displays a submenu of commands for opening the standard
Font and Text submenus, plus the Document Layout command
for specifying the layout of the document in the main window.
See “Commands in the Format Menu” on page 5-19.

Tools Contains commands for opening a panel containing the tools
available for use in creating an icon. See “Commands in the
Tools Menu” on page 5-20.

Using Icon Builder to Create Application Icons 5-19

5

Commands in the Format Menu

Icon Builder’s Format menu, described in Table 5-3, contains submenus of
standard font and text commands, which you can use to affect the appearance
of text used in Icon Builder, as well as the Document Layout command.

Table 5-2 Icon Builder’s Document Submenu

Command Description

Open Opens an existing document window. See “Opening an Existing
Document” on page 5-3.

New Opens a new document window using the default attributes.
See “Creating a New Document” on page 5-2.

New Layout Displays a panel that lets you change the default attributes used
in creating a new document. See “Creating a New Document”
on page 5-2.

Save, Save As Saves a document (consisting of one or more TIFF images) to a
TIFF file. See “Saving a Document” on page 5-3.

Revert to Saved Undoes the changes that have been made since the last time the
document was saved.

Table 5-3 Icon Builder’s Format Menu

Command Description

Font Opens a menu of standard Font commands, which you use to
set the font characteristics of the selected text in the TextTool
inspector.

Text Opens a menu of standard Text commands, which you use to
set the attributes of the selected text in the TextTool inspector.

Document Layout Displays the Document Layout panel, which you use to change
the attributes of a document window. See “Changing the
Attributes of a Document” on page 5-17.

5-20 OpenStep Development Tools—September 1996

5

Commands in the Tools Menu

The Tools menu, described in Table 5-4, contains commands for accessing the
primary tools provided in Icon Builder.

Table 5-4 Icon Builder’s Tools Menu

Command Description

Inspector Opens the Inspector panel, which you use to change the
appearance and behavior of the available tools. See “Using the
Tools Inspector” on page 5-8.

Tools Opens the Tools panel, which you use to select among available
tools. See “Using Icon Builder Tools” on page 5-4.

Colors Opens the standard Colors panel, which you use to choose
color or gray-scale values.

Obese Bits Opens the ObeseBits panel, which you use to magnify the
contents of a document window. See “Zooming In on a
Document” on page 5-15.

Load Tool Opens the Load Tool panel, which you use to load a user-
defined tool.

6-1

Navigating the OpenStep API with
Header Viewer 6

Header Viewer is a programmer’s research and reference tool. With Header
Viewer, you navigate through OpenStep’s application programming interface
(API); review the declarations of language elements such as methods,
functions, and constants; and retrieve relevant passages from the OpenStep
developer documentation. Header Viewer helps you unravel unfamiliar code,
whether building blocks from the OpenStep software kits, programming
examples, or programs written by your own development team.

This chapter introduces Header Viewer and shows how it can speed your
programming effort. The next section gives you some insight into how Header
Viewer works. The remaining sections teach you how to use Header Viewer in
your development work.

6-2 OpenStep Development Tools—September 1996

6

Header Viewer and Header Files
Header files are indispensable to developers. They declare the programmatic
interfaces to individual modules of code and, through #import and #include
statements, link one header file to another. The header file is the final authority
for any particular programmatic interface.

Although the final authority, header files are not always the easiest reference to
use. In an object-oriented environment such as OpenStep, a large proportion of
header files declare the interfaces to classes, in general, one class per header
file. However, since a class inherits part of its interface from its superclass, you
might have to search several files to learn the capabilities of a single class.
Compounding this problem is the sheer number of classes: The Application Kit
alone has over 60 classes. A more sensible approach would be to have a tool
that could follow these interconnections directly.

In principle, a simple tool that performed text-based searches on the header file
might do the job; however, given that the header files for the Application Kit
alone contain several thousand lines of declarations, in practice such a tool
would be too slow. A better approach is needed.

Precompiled Headers

Header Viewer’s approach is to use OpenStep’s precompiled headers. A
precompiled header has been processed by the preprocessor, leaving it in a
compact, binary format. During preprocessing, macros are expanded,
comments removed, other headers included as indicated by #include or
#import directives, and language tokens parsed from the resulting stream of
text. Because it uses precompiled headers, Header Viewer can be called a
language-sensitive browser.

Precompiled headers are stored in files having a .p extension. OpenStep
includes precompiled headers (in /usr/openstep/Developer/include) for
the Application Kit (Appkit/Appkit.p) and FoundationKit
(Foundation/Foundation.p).

Upon launch, Header Viewer loads the precompiled headers by default. If you
plan to scan the API’s of the other libraries, you can add the headers. In
addition, you can display the contents of other header files, including your
own, by adding them to Header Viewer’s list. See ““Adding Header Files” on
page 6-12 for more information.

Navigating the OpenStep API with Header Viewer 6-3

6

Note – This chapter refers to both .h and .p files as header files. Header
Viewer accommodates both by precompiling .h files when needed.

Language Elements

Header Viewer scans a precompiled header for the language elements it
contains and categorizes them by type. It then lets you select the category you
want to display. For example, you can look at all the methods, the functions, or
the constants that are declared. Table 6-1 describes the categories Header
Viewer lists.

Table 6-1 Language Elements You Can Look at with Header Viewer

Language Element Description

class In the Objective C language, a prototype for a particular
kind of object. A class definition declares instance
variables and defines methods for all members of the
class. In Header Viewer, classes can be listed or browsed
in a class hierarchy.

category In the Objective C language, a set of method definitions
that is segregated from the rest of the class definition.
Categories can be used to organize a class definition into
parts or to add methods to an existing class without
creating a subclass.

protocol In the Objective C language, a list of methods not
associated with any particular class. Protocols are often
used to promote reuse of a design.

method A procedure that can be executed by an object.

function A routine designed to accomplish a particular task.
Header Viewer lists all functions, including C library
functions, OpenStep NS functions, and UNIX system
calls.

global data Variables that are visible to all programming modules.

typedef A type definition. In the C language, used to create a new
variable type from existing types.

6-4 OpenStep Development Tools—September 1996

6

For additional information about the meaning and use of a language element,
refer to Chapter 8, “The Objective C Language,” Chapter 9, “The Objective C
Extensions,” or The C Programming Language by Kernighan and Ritchie.

Header Viewer and OpenStep Documentation
Header Viewer retrieves documentation for any OpenStep class, method,
protocol, or category. It accesses files in
/usr/openstep/Developer/Documentation , which correspond to
chapters in OpenStep Programming Reference. It does not retrieve documentation
for the other types of API elements, such as those declared in the standard C
libraries.

struct A structure data type, identified in the C language by the
keyword struct .

union A data type that allows different data names and data
types to be assigned to the same storage location.

enum The C language enumerated data type, consisting of a
named set of values with an integer assigned to each
member of the set.

enum constants The constants declared within an enumeration set.

constant-like macros A macro that is defined and treated like a constant.

function-like macros A macro that is defined and treated like a function.

 macros guard A C language macro that is used to ensure that each
header file is included only once. The Objective C
#import declaration makes once-hack macros
unnecessary.

predefined macros Symbol names that are defined by the compiler. Many
deal with parameters such as byte swapping and
determining a machine’s CPU type.

header A file that contains programming declarations. In Header
Viewer, header files can be listed or browsed in a
hierarchy.

Table 6-1 Language Elements You Can Look at with Header Viewer (Continued)

Language Element Description

Navigating the OpenStep API with Header Viewer 6-5

6

Header Viewer retrieves only the defining passage from the developer
documentation, not every reference. For example, when you use it to access the
documentation for the display method of the NSView class, it shows you the
description of the method found in the NSView class specification. It does not
search other sources for additional references to the method.

Using Header Viewer
Header Viewer has a single main window, which can display a Browser view
or a Finder view. The window displays the Browser view when the application
is launched, but you can set a preference for the Finder view to appear as the
default view. You can switch from one view to the other using the Utilities
menu.

In either the Browser view or Finder view, you choose to view either a header
file or OpenStep developer documentation. A pop-up list in the lower right
corner of the Header Viewer main window offers a choice of either a Header
File or Documentation. Header files are always available; if documentation is
not available, the Documentation choice is grayed out.

The Browser View

The Browser view, shown in Figure 6-1 on page 6-6, outlines hierarchies of
classes and lists all occurrences of language elements such as methods or
functions. The Browser view helps you discover what is available to you, both
in OpenStep’s libraries and in code you obtain from others.

6-6 OpenStep Development Tools—September 1996

6

Figure 6-1 Header Viewer’s Browser View

Header Viewer’s Browser view resembles the Browser view of the OpenStep
Workspace Manager’s File Viewer. However, with Header Viewer’s Browser
view, you are not looking at the file system; rather, you are looking at the
contents of header files. You do not see ordinary files and folders; instead, you
see lists of header files or classes, methods, and other language elements.

A pop-up list above each Browser column allows you to choose what kinds of
things you see in the Browser columns. You choose from a list of 14 different
language elements (see “Language Elements” on page 6-3).

Note – The pop-up list above a Browser column changes depending on what
you select in the preceding column.

Navigating the OpenStep API with Header Viewer 6-7

6

The left-most column always shows a list of header files. The pop-up list above
the column (see Figure 6-2) lets you remove header files (see “Adding Header
Files” on page 6-12 for more information).

Figure 6-2 Removing a Header File

If you are browsing a Header Hierarchy and select a header that includes other
headers (indicated by a pointer in the Browser column), you see a list of
included headers in the neighboring column. A pop-up list above the
neighboring column allows a choice of Direct Headers or All Headers (see
Figure 6-3 on page 6-8). Direct headers are only those you see included in the
header file. All headers are all those upon which the header is dependent,
whether directly or indirectly.

6-8 OpenStep Development Tools—September 1996

6

Figure 6-3 Selecting Direct Headers or All Headers in a Header Hierarchy

If you choose Class Hierarchy and select a class listed in the column, you see a
list of the subclasses that inherit from the class. Use a pop-up list above the
column (see Figure 6-4 on page 6-9) to view superclasses (the parent class from
which a class is derived), instance methods, class methods, or categories.

Navigating the OpenStep API with Header Viewer 6-9

6

Figure 6-4 Choosing Display in a Class Hierarchy

If you choose Class List and select a class listed in the column, you see a list of
its instance methods in the following column. Use the pop-up list above the
column to view subclasses, superclasses, class methods, or categories.

If you choose Methods and select a method listed in the column, you see a list
of classes in the following column if the method is implemented by more than
one class, category, or protocol. Use a pop-up list above the column to view
classes, categories, or protocols. If the method is used by only one class,
category, or protocol, nothing is shown in the neighboring column.

The Browser view is a powerful aid to visualizing the relationship of one
header file to others, the chains of inheritance among classes, and the use of
language elements in header files. Its dynamic lists present the information in
compact form.

6-10 OpenStep Development Tools—September 1996

6

The Finder View

The Finder view lets you search header files and retrieve related
documentation. In practice, you use the Finder view, shown in Figure 6-5, to
look up the details you need to put any language element to good use.

Figure 6-5 Header Viewer’s Finder View

The Finder view displays a text field at the top. Entering a string and clicking
the Find button initiates a search for the string. Results of a search are
displayed in a scrollable list see Figure 6-6 on page 6-11).

Navigating the OpenStep API with Header Viewer 6-11

6

Clicking on any item in the results list displays contents of a header file or
relevant documentation. The full context of the search string appears in bold
when the document window displays a header file. When matching
documentation is available, the document display shows the relevant passage
from OpenStep Programming Reference.

Figure 6-6 Find Results List

You can move through the results list by clicking either of two large arrows to
the left of the text field (or by using the up and down arrows on the keyboard).
Two small arrows to the right of the text field let you recall search strings that
you have previously used. Double-clicking on any item in the results list opens
the selected header file in Edit. The search string is highlighted in the Edit
window.

An Options button opens the Find Control Options panel, shown in Figure 6-7
on page 6-12) that lets you narrow searches to specific language elements and
selected header files. Three buttons under the title Element Usage allow
searches to include Declarations, References, or All Tokens. Ordinarily, Header
Viewer confines the results of a search to actual declarations of the string. You
can broaden the search to references to the string or any appearance of the
string in a header file (except in a comment).

6-12 OpenStep Development Tools—September 1996

6

Figure 6-7 Selecting Find Control Options

You can also narrow or broaden searches by choosing Ignore Case or Match
Prefix in the Find Control Options panel.

You can alter the rank of the results by choosing Sort Order from the pop-up
list in the Find Control Options panel. By manipulating the Sort Order and the
Find options, you precisely tune a search to yield only the information most
useful to you.

Adding Header Files

On launch, Header Viewer looks for headers that correspond to headers
present in the Header Viewer list. By default, Header Viewer uses the headers
that correspond to the header files Appkit.h and Foundation.h .

You add your own header files to Header Viewer by choosing Add Header in
the Utilities menu and selecting a file with the standard Open panel. Header
Viewer temporarily compiles the header, parses its language elements, and
displays its contents in the document window.

Header Viewer retains the precompiled header in memory as long as Header
Viewer is running. If you want to continue to use your own headers the next
time you launch Header Viewer, you must first recompile the header. Header
Viewer’s Preferences panel (see Figure 6-9 on page 6-14) allows you to specify
which header files will be listed at launch.

Navigating the OpenStep API with Header Viewer 6-13

6

The Find Panel

Use the Find in Viewer panel, shown in Figure 6-8, to search for any text string
in the Header Viewer document window or Finder view results list.

Figure 6-8 Header Viewer’s Find in Viewer Panel

This Find panel is similar to the one you use in Edit. Unlike Header Viewer’s
more powerful Find button, which searches precompiled headers for specific
language elements, the Find in Viewer panel is a character-based search tool
that only scans the contents of the document window or the Finder view
results list. However, this can be very useful when searching for a specific
method in a long list of methods displayed in a Finder view results list, or in
looking for all occurrences of a string in a header file or documentation
chapter.

Header Viewer and the File Viewer

Occasionally you may encounter a header file you would like to investigate
while working in the File Viewer. Double-clicking on a .h file usually opens it
in Edit. To force Header Viewer to open the .h file, choose Add Header from
the Header Viewer submenu of Workspace Manager’s Services menu. Header
Viewer temporarily precompiles the header, parses its language elements, and
displays its contents in the document window.

Header Viewer and Edit

If you are writing code or debugging source, you will want to access Header
Viewer from your editor. Select any text string and pass it to Header Viewer. To
do so, choose Find from the Header Viewer submenu of the Services menu.

6-14 OpenStep Development Tools—September 1996

6

Note – Header Viewer can match an entire message expression. This is one of
Header Viewer’s most powerful facilities. If you are working in Edit,
double-click on the first square bracket in an expression to select the entire
message expression, then pass it to Header Viewer through the Services menu.
Header Viewer strips the expression of its receiver and arguments and matches
the message to all corresponding methods. A look at the developer
documentation should quickly reveal the correct use of the expression.

Setting Preferences
The Preferences command in the Info menu displays the Preferences panel,
shown in Figure 6-9. Preferences options are grouped in three views. A pop-up
list offers a choice of preference view: Header Files, Documentation
Directories, and Other Options.

Figure 6-9 Header Viewer Preferences Panel

Header Files Preferences

Choose Header Files from the pop-up list in the Preferences panel to specify
additional header files that Header Viewer lists when launched. You can add
conventional headers (.h files).

Navigating the OpenStep API with Header Viewer 6-15

6

Documentation Preferences

Choose Documentation Directories from the pop-up list in the Preferences
panel to enable Header Viewer to access additional documentation directories.
Documentation must conform to the format used by OpenStep developer
documentation, as indicated in the panel shown in Figure 6-10.

Figure 6-10 Documentation Directories Panel

Other Options Preferences

Choose Other Options from the pop-up list in the Preferences panel to set
defaults for Header Viewer on launch and to set default options for the C
preprocessor when you add a header file to Header Viewer (see Figure 6-11 on
page 6-16).

The Default View group lets you specify what you see when you launch
Header Viewer: header files or documentation, the Browser view or the Finder
view.

The Default C Preprocessor Options group lets you specify default options
(such as the -D, -U, and -I switches) for the C preprocessor to use when
precompiling a header file for use in Header Viewer. These options precede
any other options you choose when you add a header file to Header Viewer.

6-16 OpenStep Development Tools—September 1996

6

Figure 6-11 Other Options Panel

Header Viewer Command Reference
Header Viewer’s main menu offers the standard Info, Edit, Windows, Services,
Print, Hide, and Quit commands. All commands unique to Header Viewer are
located in the Find (under Edit) and Utilities menus. These menus and the
commands they contain are described in “Commands in the Find Menu” and
in “Commands in the Utilities Menu” on page 6-18.

Commands in the Find Menu

The Find menu offers the commands listed in Table 6-2 on page 6-17 for
finding text in the document window or in the list of results displayed in the
Finder view.

Navigating the OpenStep API with Header Viewer 6-17

6

Table 6-2 Find Menu Commands

Command Description

Find Panel Opens a panel to allow you to enter a text string for a search.

Find Next Searches forward from the insertion point or current selection
in the list of results displayed in the Finder view. It searches
for the text you’ve typed in the Find field of the Find panel. It
does the same thing as the Next button in the Find panel.

Find Previous Same action as the Find Next command, but searches
backward.

Enter Selection A shortcut; same as copying a text selection and pasting it into
the Find panel.

6-18 OpenStep Development Tools—September 1996

6

Commands in the Utilities Menu

The Utilities menu contains the commands shown in Table 6-3 that let you
control the Header Viewer main window.

Table 6-3 Utilities Menu Commands

Command Description

Find Displays the Finder view.

Browse Displays the Browser view.

Browse Selection Displays the selection you have made in the Finder view within
a Browser view hierarchy.

Update Determines if any header files have changed since Header
Viewer was launched; recompiles and reparses headers that
have changed (the precompiled version is stored only in
memory). Most useful when you have made changes to your
own header files.

Add Header Allows you to add your own header files to Header Viewer.
You can add conventional headers (.h files). If you would like
Header Viewer to use these files whenever it is launched,
choose the Preferences command from Header Viewer’s main
menu.

Open in Edit Opens the current header or documentation files in the Edit
application and highlights the declaration of the language
element you have specified in the Finder view or selected in the
Browser view.

7-1

TheNSObject Class 7

Class Description
NSObject is the root class of all ordinary Objective C inheritance hierarchies;
it has no superclass. Its interface derives from two sources: the methods it
declares directly and those declared in the NSObject protocol. Its interface is
divided in this way so that objects inheriting from other root classes (notably
NSProxy) can stand in for ordinary objects without having to inherit from
NSObject . The following discussion makes no distinction between the
methods declared in this class and those declared in the NSObject protocol.

From NSObject , other classes inherit a basic interface to the runtime system
for the Objective C language. It is through NSObject that instances of all
classes obtain their ability to behave as objects. Among other things, the
NSObject class provides inheriting classes with a framework for creating,
initializing, deallocating, comparing, and archiving objects, for performing
methods selected at run-time, for querying an object about its methods and its
position in the inheritance hierarchy, and for forwarding messages to other

Characteristic Description

Inherits From: none (NSObject is the root class.)

Conforms To NSObject

Declared In: Foundation/NSObject.h
Foundation/NSRunLoop.h

7-2 OpenStep Development Tools—September 1996

7

objects. For example, to ask an object what class it belongs to, you would send
it a class message. To find out whether it implements a particular method,
you would send it a respondsToSelector: message.

The NSObject class is an abstract class; programs use instances of classes that
inherit from NSObject , but never of NSObject itself.

Initializing an Object to Its Class

Every object is connected to the runtime system through its isa instance
variable, inherited from the NSObject class, which identifies the object’s class;
it points to a structure that is compiled from the class definition. Through isa ,
an object can find whatever information it needs at ru time, such as its place in
the inheritance hierarchy, the size and structure of its instance variables, and
the location of the method implementations it can perform in response to
messages.

Because all ordinary objects inherit directly or indirectly from the NSObject
class, they all have this variable. The defining characteristic of an “object” is
that its first instance variable is an isa pointer to a class structure.

The installation of the class structure—the initialization of isa —is one of the
responsibilities of the alloc and allocWithZone: methods, the same
methods that create (allocate memory for) new instances of a class. In other
words, class initialization is part of the process of creating an object; it is not
left to the methods, such as init, that initialize individual objects with their
particular characteristics.

Instance and Class Methods

Every object requires an interface to the runtime system, whether it is an
instance object or a class object. For example, it should be possible to ask either
an instance or a class whether it can respond to a particular message. So that
this will not mean implementing every NSObject method twice, once as an
instance method and again as a class method, the run-time system treats
methods defined in the root class in a special way: Instance methods defined in
the root class can be performed both by instances and by class objects.

A class object has access to class methods—those defined in the class and those
inherited from the classes above it in the inheritance hierarchy—but generally
not to instance methods. However, the runtime system gives all class objects

The NSObject Class 7-3

7

access to the instance methods defined in the root class. Any class object can
perform any root instance method, provided it does not have a class method
with the same name.

For example, a class object could be sent messages to perform NSObject ’s
respondsToSelector: and perform:withObject: instance methods:

SEL method = @selector(riskAll:);

if ([MyClass respondsToSelector:method])
 [MyClass perform:method withObject:self];

When a class object receives a message, the run-time system looks first at the
receiver’s set of class methods. If it fails to find a class method that can
respond to the message, it looks at the set of instance methods defined in the
root class. If the root class has an instance method that can respond (as
NSObject does for respondsToSelector: and perform:withObject:),
the run-time system uses that implementation and the message succeeds.

Only instance methods available to a class object are those defined in the root
class. If MyClass in the example above had reimplemented either
respondsToSelector: or perform:withObject: , those new versions of
the methods would be available only to instances. The class object for MyClass
could perform only the versions defined in the NSObject class. (Of course, if
MyClass had implemented respondsToSelector: or
perform:withObject: as class methods rather than instance methods, the
class would perform those new versions.)

Initializing the Class

Method Description

+ (void)initialize Initializes the class before it is used (before it receives its
first message).

7-4 OpenStep Development Tools—September 1996

7

Creating and Destroying Instances
.

Method Description

+ (id)alloc Returns a new, uninitialized instance of the
receiving class

+ (id)allocWithZone:(NSZone *)zone Returns a new, uninitialized instance of the
receiving class in zone .

+ (id)new Allocates a new instance of the receiving
class, sends it an init message, and returns
the initialized object returned by init . This
method is simply a convenient cover for the
alloc and init methods.

– (id)copy Invokes copyWithZone: . This method is
implemented in NSObject as a convenience
to subclasses. A subclass need override only
copyWithZone: for both copy and
copyWithZone: to operate correctly.

– (void)dealloc Deallocates the memory occupied by the
receiver.

– (id)init Implemented by subclasses to initialize a
new object (the receiver) immediately after
memory for it has been allocated.

– (id)mutableCopy Invokes mutableCopyWithZone: . This
method is implemented in NSObject as a
convenience to subclasses. A subclass need
override only mutableCopyWithZone: for
both mutableCopy: and
mutableCopyWithZone: to operate
correctly.

The NSObject Class 7-5

7

Identifying Classes

Testing Class Functionality

Method Description

+ (Class)class Returns self . Since this is a class method, it returns the class
object.

+ (Class)superclass Returns the class object for the receiver’s superclass.

Method Description

+ (BOOL)instancesRespondToSelector:(SEL)aSelector Returns YES if instances of
the class are capable of
responding to aSelector
messages, and NO if they are
not.

7-6 OpenStep Development Tools—September 1996

7

Testing Protocol Conformance

Obtaining Method Information

Method Description

+ (BOOL)conformsToProtocol:(Protocol *)aProtocol Returns YES if the receiving
class conforms to aProtocol ,
and NO if it does not.

Method Description

+ (IMP)instanceMethodForSelector:(SEL)aSelector Locates and returns the
address of the
implementation of the
aSelector instance method.

– (IMP)methodForSelector:(SEL)aSelector Locates and returns the
address of the receiver’s
implementation of the
aSelector method, so that it
can be called as a function.

– (NSMethodSignature *)
methodSignatureForSelector:(SEL)aSelector

Returns an object that contains
a description of the
aSelector method, or nil if
the aSelector method can
not be found.

The NSObject Class 7-7

7

Describing Objects

Posing

Error Handling

Method Description

+ (NSString *)description Subclasses override this method to return a human-
readable string representation of the contents of the
receiver. NSObject ’s implementation simply prints
the name of the receiver’s class.

Method Description

+ (void)poseAsClass:(Class)aClassObject Causes the receiving class to “pose as” its
superclass.

Method Description

– (void)doesNotRecognizeSelector:(SEL)aSelector Handles aSelector messages
that the receiver does not
recognize.

7-8 OpenStep Development Tools—September 1996

7

Sending Deferred Messages

Forwarding Messages

Method Description

+(void)cancelPreviousPerformRequestsWithTarget:(id)aTarget
selector:(SEL)aSelector
object:(id)anObject

Cancels previous
perform requests
having the same
target and argument
(as determined by
isEqual:), and
the same selector.
This method
removes timers only
in the current run
loop, not all run
loops.

–(void)performSelector:(SEL)aSelector
object:(id)anObject
afterDelay:(NSTimeInterval)delay

Sends an aSelector
message to
anObject after
delay. self and
anObject are
retained until after
the action is
executed.

Method Description

– (void)forwardInvocation:(NSInvocation *)anInvocation Implemented by
subclasses to forward
messages to other objects.

The NSObject Class 7-9

7

Archiving

Method Description

– (id)awakeAfterUsingCoder:
(NSCoder *)aDecoder

Implemented by subclasses to reinitialize
the receiver after unarchiving. The
NSObject implementation of this method
simply returns self.

– (Class)classForArchiver Identifies the class to be used during
archiving. NSObject ’s implementation
returns the object returned by
classForCoder: .

– (Class)classForCoder Identifies the class to be used during
serialization. An NSObject returns its own
class by default.

– (id)replacementObjectForArchiver:
(NSArchiver *)anArchiver

Allows an object to substitute another object
for itself during archiving. NSObject ’s
implementation returns the object returned
by replacementObjectForCoder: .

– (id)replacementObjectForCoder:
(NSCoder *)anEncoder

Allows an object to substitute another object
for itself during serialization. NSObject ’s
implementation returns self.

+ (void)setVersion:(int)version Sets the class version number to version .

+ (int)version Returns the version of the class definition.

7-10 OpenStep Development Tools—September 1996

7

8-1

The Objective C Language 8

This chapter describes the OpenStep Objective C language as well as the
principles of object-oriented programming as implemented in Objective C.
Chapter 9, “The Objective C Extensions” continues the discussion by taking up
more advanced and less commonly used language features.

Objective C syntax is a superset of standard C/C++ syntax, and its compiler
works for C, C++, and Objective C source code. The compiler recognizes
Objective C source files by a .m extension, just as it recognizes files containing
only standard C syntax by a .c extension or C++ with a .cc extension. As
implemented for OpenStep, the Objective C language is fully compatible with
ANSI standard C.

Objective C can also be used as an extension to C++. This may seem superfluous
since C++ is itself an object-oriented extension of C. But C++ was designed
primarily as “a better C,” and not necessarily as a full-featured object-oriented
language. It lacks some of the possibilities for object-oriented design that
dynamic typing and dynamic binding bring to Objective C. At the same time, it
has useful language features not found in Objective C. When you use the two
languages in combination, you can assign appropriate roles to the features found
in each and take advantage of what is best in both. The NEO Programming Guide
has more on combining C++ with Objective C.

Because object-oriented programs postpone many decisions from compile time
to run time, object-oriented languages depend on a run-time system for
executing the compiled code. This chapter and Chapter 9, “The Objective C
Extensions” present the language, but touch on important elements of the run-

8-2 OpenStep Development Tools—September 1996

8

time system as they are important for understanding language features. The
CAFE compiler has been modified to also compile Objective C and provide its
own run-time system.

Objects
As the name implies, object-oriented programs are built around objects. An
object associates data with the particular operations that can use or affect that
data. In Objective C, these operations are known as the object’s methods; the data
they affect are its instance variables. In essence, an object bundles a data structure
(instance variables) and a group of procedures (methods) into a self-contained
programming unit.

For example, through the OpenStep Application Kit, you can produce an object
that displays a matrix of cells to users of your application. The cells might be text
fields where the user can enter data, a series of mutually exclusive switches, a list
of buttons or menu commands, or a bank of sliders. Figure 8-1 illustrates some
of the different kinds of cells a matrix can contain:

Figure 8-1 Some NSMatrix Objects

An NSMatrix object has instance variables that define the matrix, including its
dimensions and coordinates, the font used to display character strings in the
cells, the arrangement of cells into rows and columns, and what to do when a cell

The Objective C Language 8-3

8

is selected. An NSMatrix also has methods that do such things as alter its size,
change its position on-screen, add and remove cells, highlight a particular cell,
and set the color that is displayed between cells.

Each cell in an NSMatrix is also an object. Cells have instance variables that
record their contents and what action to take when the cell is selected. They have
methods to determine what the cell looks like and to track the cursor as it moves
from cell to cell.

In Objective C, an object’s instance variables are internal to the object; you get
access to an object’s state through the object’s methods. For others to find out
something about an object, there has to be a method to supply the information.
For example, an NSMatrix has methods that reveal its size, the currently
selected cell, and the current number of columns and rows.

Moreover, an object sees only the methods that were designed for it; it cannot
mistakenly perform methods intended for other types of objects. Just as a C
function protects its local variables, hiding them from the rest of the program, an
object hides both its instance variables and its method implementations.

The id Data Type

In Objective C, objects are identified by a distinct data type, id . This type is
defined as a pointer to an object—in reality, a pointer to the object’s data (its
instance variables). Like a C function or an array, an object is identified by its
address. All objects, regardless of their instance variables or methods, are of type
id .

id anNSObject;

For the object-oriented constructs of Objective C, such as method return values,
id replaces int as the default data type. For strictly C constructs, such as
function return values, int remains the default type.

The keyword nil is defined as a null object, an id with a value of 0. The data
types id and nil , and the other basic types of Objective C are defined in the
header file objc.h , which is located in the objc subdirectory of
/usr/openstep/include .

8-4 OpenStep Development Tools—September 1996

8

Dynamic Typing

The id type is completely nonrestrictive. By itself, it yields no information about
an object, except that it is an object.

But objects are not all the same. An NSMatrix will not have the same methods
or instance variables as an object that represents one of its cells. Cells that display
buttons (NSButtonCells) will not be exactly like those that display text
(NSTextFieldCells). At some point, a program needs to find more specific
information about the objects it contains—what the object’s instance variables
are, what methods it can perform, and so on. Since the id type designator cannot
supply this information to the compiler, each object has to be able to supply it at
run time.

This is possible because every object carries with it an isa instance variable that
identifies the object’s class—what kind of object it is. Every NSMatrix object
would be able to tell the run-time system that it is an NSMatrix . Every
NSButtonCell can say that it is an NSButtonCell . Objects with the same
behavior (methods) and the same kinds of data (instance variables) are members
of the same class.

Objects are thus dynamically typed at run time. Whenever it needs to, the run-time
system can find the exact class that an object belongs to, just by asking the object.
Dynamic typing in Objective C serves as the foundation for dynamic binding,
discussed in “Dynamic Binding” on page 8-7.

The isa pointer also enables objects to introspect about themselves as objects.
The compiler does not discard much of the information it finds in source code; it
arranges most of it in data structures for the run-time system to use. Through
isa , objects can find this information and reveal it at run time. An object can, for
example, say whether it has a particular method in its repertoire and what the
name of its superclass is.

Object classes are discussed in more detail under “Classes” on page 8-8.

Note – It is also possible to give the compiler information about the class of an
object by statically typing it in source code using the class name. Classes are
particular kinds of objects, and the class name can serve as a type name. See
“Class Types” on page 8-13 and “Static Options” on page 9-22.

The Objective C Language 8-5

8

Messages
To get an object to do something, you send it a message telling it to apply a
method. In Objective C, message expressions are enclosed in square brackets:

[receiver message]

The receiver is an object, and the message tells it what to do. In source code, the
message is simply the name of a method and any arguments that are passed to
it. When a message is sent, the run-time system selects the appropriate method
from the receiver’s repertoire and invokes it.

For example, the following message tells the myNSMatrix object to perform the
display method, inherited from NSView, which draws the matrix and its cells
in a window:

[myNSMatrix display];

Methods can also take arguments. For example, the following message might tell
myNSMatrix to change its location within the window to coordinates (30.0, 50.0):

[myNSMatrix moveTo:30.0 :50.0];

Here the method name, moveTo:: , has two colons, one for each of its arguments.
The arguments are inserted after the colons, breaking the name apart. Colons do
not have to be grouped at the end of a method name, as they are here. Usually a
keyword describing the argument precedes each colon. The
getRow:Column:ofCell: method, for example, takes three arguments:

int row, column;
[myNSMatrix getRow:&row column:&column ofCell:someCell];

This method finds someCell in the matrix and puts the row and column where
it is located in the two variables &row and &column .

Methods that take a variable number of arguments are also possible, though they
are somewhat rare. Extra arguments are separated by commas after the end of
the method name. (Unlike colons, the commas are not considered part of the
name.) In the following example, the imaginary makeGroup: method is passed
one required argument (group) and three that are optional:

[receiver makeGroup:group, memberOne, memberTwo, memberThree];

Like standard C functions, methods can return values. The following example
assigns the identifying integer returned by the tag method inherited from
NSControl , to a variable also named tag .

8-6 OpenStep Development Tools—September 1996

8

int tag;
tag = [myNSMatrix tag];

Note that a variable and a method can have the same name.

One message can be nested inside another. Here the selectedCell method
returns an object that then receives a tag message:

int tag = [[myNSMatrix selectedCell] tag];

A message to nil also is valid,

[nil display];

but it has no effect. The code is harder to read because it is not apparent at the
point of invocation that the receiver can be 'nil'. Also because the method is not
invoked at all, it cannot check for the 'nil' case and take appropriate actions. This
may make it more difficult to find bugs. Messages to nil simply return nil .

Polymorphism

As the examples in “Messages” on page 8-5 illustrate, messages in Objective C
appear in the same syntactic positions as function calls in standard C. However,
because methods “belong to” an object, messages behave differently than
function calls.

In particular, an object has access only to the methods that were defined for it. It
cannot confuse them with methods defined for other kinds of objects, even if
another object has a method with the same name. This means that two objects
can respond differently to the same message. For example, each kind of object
sent a display message could display itself in a unique way. An
NSButtonCell and an NSTextFieldCell would respond differently to
identical instructions to track the cursor.

This feature, referred to as polymorphism, plays a significant role in the design of
object-oriented programs. Together with dynamic binding, it permits you to
write code that might apply to any number of different kinds of objects, without
your having to choose at the time you write the code what kinds of objects they
might be. They might even be objects that will be developed later, by other
programmers working on other projects. If you write code that sends a display
message to an id variable, any object that has a display method is a potential
receiver.

The Objective C Language 8-7

8

Dynamic Binding

A crucial difference between function calls and messages is that a function and
its arguments are joined together in the compiled code, but a message and a
receiving object are not united until the program is running and the message is
sent. Therefore, the exact method that will be invoked to respond to a message
can only be determined at run time, not when the code is compiled.

The precise method that a message invokes depends on the receiver. Different
receivers may have different method implementations for the same method
name (polymorphism). For the compiler to find the right method
implementation for a message, it would have to know what kind of object the
receiver is—what class it belongs to. This is information the receiver is able to
reveal at run time when it receives a message (dynamic typing), but it is not
available from the type declarations found in source code.

The selection of a method implementation happens at run time. When a message
is sent, a run-time messaging routine looks at the receiver and at the method
named in the message. It locates the receiver’s implementation of a method
matching the name, “calls” the method, and passes it a pointer to the receiver’s
instance variables. (For more on this routine, see “How Messaging Works” on
page 8-31.)

The method name in a message thus serves to “select” a method implementation.
For this reason, method names in messages are often referred to as selectors.

This dynamic binding of methods to messages works hand in hand with
polymorphism to give object-oriented programming much of its flexibility and
power. Since each object can have its own version of a method, a program can
achieve a variety of results, not by varying the message itself, but by varying just
the object that receives the message. This can be done as the program runs;
receivers can be decided “on the fly” and can be made dependent on external
factors such as user actions.

In the Application Kit, for example, users determine which objects receive
messages from menu commands like Cut, Copy, and Paste. The message goes to
whatever object controls the current selection. An object that displays editable
text would react to a copy: message differently than an object that displays
scanned images. An NSMatrix would respond differently than an NSCell .
Since messages do not select methods (methods are not bound to messages) until
run time, these differences are isolated in the methods that respond to the

8-8 OpenStep Development Tools—September 1996

8

message. The code that sends the message does not have to be concerned with
them; it does not even have to enumerate the possibilities. Each application can
invent its own objects that respond in their own way to copy: messages.

Objective C takes dynamic binding one step further and allows even the message
that is sent (the method selector) to be a variable that is determined at run time.
This is discussed in “How Messaging Works” on page 8-31.

Classes
An object-oriented program is typically built from a variety of objects. A
program based on the OpenStep software kits might use NSMatrix objects,
NSWindow objects, NSArray objects, NSText objects, and many others.
Programs often use more than one object of the same kind or class—several
NSArrays or NSWindows, for example.

In Objective C, you define objects by defining their class. The class definition is
a prototype for a kind of object; it declares the instance variables that become part
of every member of the class, and it defines a set of methods that all objects in the
class can use.

The compiler creates just one accessible object for each class, a class object that
knows how to build new objects belonging to the class. (For this reason it is
sometimes also called a “factory object.”) The class object is the compiled version
of the class; the objects it builds are instances of the class. The objects that will do
the main work of your program are instances created by the class object at run
time.

All instances of a class have access to the same set of methods, and they all have
a set of instance variables cut from the same mold. Each object gets its own
instance variables, but the methods are shared.

By convention, class names begin with an uppercase letter (such as NSMatrix);
the names of instances typically begin with a lowercase letter (such as
myNSMatrix).

es

The Objective C Language 8-9

8

Inheritance

Class definitions are additive; each new class that you define is based on another
class through which it inherits methods and instance variables. The new class
simply adds to or modifies what it inherits. It does not need to duplicate
inherited code.

Inheritance links all classes together in a hierarchical tree with a single class, the
NSObject class, at its root. Every class (but NSObject) has a superclass one step
nearer the root, and any class (including NSObject) can be the superclass for any
number of subclasses one step farther from the root. Figure 8-2 illustrates the
hierarchy for a few of the classes in the OpenStep Application Kit.

Figure 8-2 Some Application Kit Classes

This figure shows that the NSMatrix class is a subclass of the NSControl class,
the NSControl class is a subclass of NSView, NSView is a subclass of
NSResponder , and NSResponder is a subclass of NSObject . Inheritance is
cumulative. So an NSMatrix object has the methods and instance variables
defined for NSControl , NSView, NSResponder , and NSObject , as well as those
defined specifically for NSMatrix . This is simply to say that an NSMatrix object
is not only an NSMatrix , it is also an NSControl , an NSView, an NSResponder ,
and an NSObject .

Every class (but NSObject) can thus be seen as a specialization or an adaptation
of another class. Each successive subclass further modifies the cumulative total
of what is inherited. The NSMatrix class defines only the minimum needed to
turn an NSControl into an NSMatrix .

NSObject

NSResponder

NSApplication

NSPanel

NSView

NSControl

NSMatrix NSScroller

NSText

NSWindow

8-10 OpenStep Development Tools—September 1996

8

When you define a class, you link it to the hierarchy by declaring its superclass;
every class you create must be the subclass of another class (unless you define a
new root class). Plenty of potential superclasses are available. The OpenStep
development environment includes the NSObject class and several software
kits containing definitions for more than 125 different classes. Some are classes
that you can use “off the shelf”—incorporate into your program as is. Others you
might want to adapt to your own needs by defining a subclass.

Some kit classes define almost everything you need, but leave some specifics to
be implemented in a subclass. You can thus create very sophisticated objects by
writing only a small amount of code, and reusing work done by the
programmers at SunSoft.

The NSObject Class

NSObject is the only class without a superclass, and the only one that is in the
inheritance path for every other class. That is because it defines the basic
framework for Objective C objects and object interactions. It imparts to the
classes and instances that inherit from it the ability to behave as objects and
cooperate with the run-time system.

A class that does not need to inherit any special behavior from another class is
nevertheless made a subclass of the NSObject class. Instances of the class must
at least have the ability to behave like Objective C objects at run time. Inheriting
this ability from the NSObject class is much simpler and much more reliable
than reinventing it in a new class definition.

Chapter 7, “The NSObject Class” has a full specification of the root class and
describes its methods in detail.

Note – Implementing a new root class is a delicate task and one with many
hidden hazards. The class must duplicate much of what the NSObject class
does, such as allocate instances, connect them to their class, and identify them
to the run-time system. It is strongly recommended that you use the
NSObject class provided with OpenStep as the root class. This manual does
not explain all the ins and outs that you would need to know to replace it.

The Objective C Language 8-11

8

Inheriting Instance Variables

When a class object creates a new instance, the new object contains not only the
instance variables that were defined for its class, but also the instance variables
defined for its superclass, and for its superclass’s superclass, all the way back to
the root NSObject class. The isa instance variable defined in the NSObject
class becomes part of every object; it connects each object to its class.

A class does not have to declare instance variables. It can simply define new
methods and rely on the instance variables it inherits, if it needs any instance
variables at all.

Inheriting Methods

An object has access not only to the methods that were defined for its class, but
also to methods defined for its superclass, and for its superclass’s superclass, all
the way back to the root of the hierarchy. An NSMatrix object can use methods
defined in the NSControl , NSView, NSResponder , and NSObject classes as
well as methods defined in its own class.

Any new class you define in your program can therefore make use of the code
written for all the classes above it in the hierarchy. This type of inheritance is a
major benefit of object-oriented programming. When you use one of the object-
oriented kits provided by OpenStep, your programs can take advantage of all the
basic functionality coded into the kit classes. You have to add only the code that
customizes the kit to your application.

Class objects also inherit from the classes above them in the hierarchy. But
because they do not have instance variables (only instances do), they inherit only
methods.

Overriding One Method with Another

There is one useful exception to inheritance: When you define a new class, you
can implement a new method with the same name as one defined in a class
farther up the hierarchy. The new method overrides the original; instances of the
new class will perform it rather than the original, and subclasses of the new class
will inherit it rather than the original.

8-12 OpenStep Development Tools—September 1996

8

For example, the NSResponder class defines a performKeyEquivalent:
method that NSMatrix overrides by defining its own version of
performKeyEquivalent: . The NSResponder method is available to all kinds
of objects that inherit from the NSResponder class—but not to NSMatrix
objects, which instead perform the NSMatrix version of display .

Although overriding a method blocks the original version from being inherited,
other methods defined in the new class can skip over the redefined method and
find the original (see “Messages to self and super” on page 8-39 to learn how).

A redefined method can also incorporate the very method it overrides. When it
does, the new method serves only to refine or modify the method it overrides,
rather than replace it outright. When several classes in the hierarchy define the
same method, but each new version incorporates the version it overrides, the
implementation of the method is effectively spread over all the classes.

Although a subclass can override inherited methods, it cannot override inherited
instance variables. Since an object has memory allocated for every instance
variable it inherits, you cannot override an inherited variable by declaring a new
one with the same name. If you try, the compiler complains.

Abstract Classes

Some classes are designed only so that other classes can inherit from them. These
abstract classes group methods and instance variables that will be used by a
number of different subclasses into a common definition. The abstract class is
incomplete by itself, but contains useful code that reduces the implementation
burden of its subclasses.

The NSObject class is the prime example of an abstract class. Although
programs often define NSObject subclasses and use instances belonging to the
subclasses, they never use instances belonging directly to the NSObject class.
An NSObject instance would not be good for anything; it would be a generic
object with the ability to do nothing in particular.

In the OpenStep software kits, abstract classes often contain code that helps
define the structure of an application. When you create subclasses of these
classes, instances of your new classes fit effortlessly into the application structure
and work automatically with other kit objects.

The Objective C Language 8-13

8

Class Types

A class definition is a specification for a kind of object. The class, in effect, defines
a data type. The type is based not just on the data structure the class defines
(instance variables), but also on the behavior included in the definition
(methods).

A class name can appear in source code wherever a type specifier is permitted in
C. The following example uses the class name NSMatrix as an argument to the
sizeof operator:

int i = sizeof(NSMatrix);

Static Typing

You can use a class name in place of id to designate an object’s type:

NSMatrix *myNSMatrix;

Since this way of declaring an object type gives the compiler information about
what kind of object it is, it is known as static typing. Just as id is defined as a
pointer to an object, objects are statically typed as pointers to a class. Objects are
always typed by a pointer. Static typing makes the pointer explicit; id hides it.

Static typing permits the compiler to do some type checking—for example, to
warn if an object receives a message that it appears not to be able to respond
to—and to loosen some restrictions that apply to objects generically typed id . In
addition, it can make your intentions clearer to others who read your source
code. However, it does not defeat dynamic binding or alter the dynamic
determination of a receiver’s class at run time.

An object can be statically typed to its own class or to any class from which it
inherits. For example, since inheritance makes an NSMatrix a kind of NSView,
an NSMatrix instance could be statically typed to the NSView class, as shown in
the following example.

NSView *myNSMatrix;

This is possible because an NSMatrix is an NSView. It is more than an NSView
since it also has the instance variables and method capabilities of an NSControl
and an NSMatrix , but it is an NSView nonetheless. For purposes of type
checking, the compiler will consider myNSMatrix to be an NSView, but at run
time it will be treated as an NSMatrix .

See “Static Options” on page 9-22 for more on static typing and its benefits.

8-14 OpenStep Development Tools—September 1996

8

Type Introspection

Instances can reveal their types at run time. The isMemberOfClass: method,
defined in the NSObject class, checks whether the receiver is an instance of a
particular class:

if ([anNSObject isMemberOfClass:someClass])

 . . .

The isKindOfClass: method, also defined in the NSObject class, checks
more generally whether the receiver inherits from or is a member of a particular
class (whether it has the class in its inheritance path):

if ([anNSObject isKindOfClass:someClass])

 . . .

The set of classes for which isKindOfClass: returns YES is the same set to
which the receiver can be statically typed.

Introspection is not limited to type information. Later sections of this chapter
discuss methods that return the class object, report whether an object can
respond to a message, and reveal other information.

See Chapter 7, “The NSObject Class“ for more on isKindOfClass: ,
isMemberOfClass: , and kindred methods.

Class Objects

A class definition contains various kinds of information, much of it about
instances of the class:

• The name of the class and its superclass
• A template describing a set of instance variables
• The declaration of method names and their return and argument types
• The method implementations

This information is compiled and recorded in data structures made available to
the run-time system. The compiler creates just one object, a class object, to
represent the class. The class object has access to all the information about the
class, which means mainly information about what instances of the class are like.
It is able to produce new instances according to the plan put forward in the class
definition.

The Objective C Language 8-15

8

Although a class object keeps the prototype of a class instance, it is not an
instance itself. It has no instance variables of its own and it cannot perform
methods intended for instances of the class. However, a class definition can
include methods intended specifically for the class object—class methods as
opposed to instance methods. A class object inherits class methods from the
classes above it in the hierarchy, just as instances inherit instance methods.

In source code, the class object is represented by the class name. In the following
example, the NSMatrix class returns the class version number using a method
inherited from the NSObject class:

int versionNumber = [NSMatrix version];

However, the class name stands for the class object only as the receiver in a
message expression. Elsewhere, you need to ask an instance or the class to return
the class id . Both respond to a class message, as shown by the instance of an
NSObject and the class NSMatrix in the following coce:

id aClass = [anNSObject class];

id matrixClass = [NSMatrix class];

As these examples show, class objects can, like all other objects, be typed id . But
class objects can also be more specifically typed to the Class data type, as shown
in the following example.

Class aClass = [anObject class];

Class matrixClass = [NSMatrix class];

All class objects are of type Class . Using this type name for a class is equivalent
to using the class name to statically type an instance.

Class objects are thus full-fledged objects that can be dynamically typed, receive
messages, and inherit methods from other classes. They are special only in that
they are created by the compiler, lack data structures (instance variables) of their
own other than those built from the class definition, and are the agents for
producing instances at run time.

Note – The compiler also builds a “metaclass object” for each class. It
describes the class object just as the class object describes instances of the class.
But while you can send messages to instances and to the class object, the
metaclass object is used only internally by the run-time system.

8-16 OpenStep Development Tools—September 1996

8

Creating Instances

A principal function of a class object is to create new instances. The following
code tells the NSMatrix class to create a new NSMatrix instance and assign it to
the variable:

id myNSMatrix;
myNSMatrix = [NSMatrix alloc];

The alloc method dynamically allocates memory for the new object’s instance
variables and initializes them all to 0—all, that is, except the isa variable that
connects the new instance to its class. For an object to be useful, it generally
needs to be more completely initialized. That is the function of an init method.
Initialization typically follows immediately after allocation, as in the following
example.

myNSMatrix = [[NSMatrix alloc] init];

This line of code, or one like it, would be necessary before myNSMatrix could
receive any of the messages that were illustrated in previous examples in this
chapter. The alloc method returns a new instance and that instance performs
an init method to set its initial state. Every class object has at least one method
(like alloc) that enables it to produce new objects, and every instance has at
least one method (like init) that prepares it for use. Initialization methods often
take arguments to allow particular values to be passed and have keywords to
label the arguments. For example, the method
(initWithFrame:mode:cellClass:numberOfRows:numberOfColumns: ,
would most often initialize a new NSMatrix instance), but tall initialization
methods begin with init .

Customization with Class Objects

It is not just a whim of the Objective C language that classes are treated as objects.
It is a choice that has intended, and sometimes surprising, benefits for design. It
is possible, for example, to customize an object with a class, where the class
belongs to an open-ended set. In the Application Kit, an NSMatrix object can be
customized with a particular kind of NSCell .

An NSMatrix can take responsibility for creating the individual objects that
represent its cells. It can do this when the NSMatrix is first initialized and later
when new cells are needed. The visible matrix that an NSMatrix object draws

The Objective C Language 8-17

8

on-screen can grow and shrink at run time, perhaps in response to user actions.
When it grows, the NSMatrix needs to be able to produce new objects to fill the
new slots that are added.

But what kind of objects should they be? Each NSMatrix displays just one kind
of NSCell , but there are many different kinds. The inheritance hierarchy in
Figure 8-3 shows some of those provided by the Application Kit. All inherit
from the generic NSCell class.

Figure 8-3 Inheritance Hierarchy for Cells

When an NSMatrix creates new NSCell objects, should they be
NSButtonCells to display a bank of buttons or switches, NSTextFieldCells
to display a field where the user can enter and edit text, or some other kind of
NSCell ? The NSMatrix must allow for any kind of NSCell , even types that
have not been invented yet.

One solution to this problem would be to define the NSMatrix class as an
abstract class and require everyone who uses it to declare a subclass and
implement the methods that produce new cells. Because they would be
implementing the methods, users of the class could be sure that the objects they
created were of the right type.

But this requires others to do work that ought to be done in the NSMatrix class,
and it unnecessarily proliferates the number of classes. Since an application
might need more than one kind of NSMatrix , each with a different kind of
NSCell , it could become cluttered with NSMatrix subclasses. Every time you
invented a new kind of NSCell , you would also have to define a new kind of
NSMatrix . Moreover, programmers on different projects would be writing
virtually identical code to do the same job, all to make up for NSMatrix ’s failure
to do it.

NSObject

NSCell

NSActionCell

NSTextFieldCellNSButtonCell NSSliderCell

8-18 OpenStep Development Tools—September 1996

8

A better solution, the solution the NSMatrix class actually adopts, is to allow
NSMatrix instances to be initialized with a kind of NSCell —with a class object.
It defines a setCellClass: method that passes the class object for the kind of
NSCell object an NSMatrix should use to fill empty slots, as in the following
example.

[myNSMatrix setCellClass:[NSButtonCell class]];

The NSMatrix uses the class object to produce new cells when it is first
initialized and whenever it is resized to contain more cells. This kind of
customization would be impossible if classes were not objects that could be
passed in messages and assigned to variables.

Variables and Class Objects

When you define a new class of objects, you can decide what instance variables
they should have. Every instance of the class will have its own copy of all the
variables you declare; each object controls its own data.

However, you cannot prescribe variables for the class object; there are no “class
variable” counterparts to instance variables. Only internal data structures,
initialized from the class definition, are provided for the class. The class object
also has no access to the instance variables of any instances; it cannot initialize,
read, or alter them.

Therefore, for all the instances of a class to share data, an external variable of
some sort is required. Some classes declare static variables and provide class
methods to manage them. Declaring a variable static in the same file as the class
definition limits its scope to just the class—and to just the part of the class that is
implemented in the file. Unlike instance variables, static variables cannot be
inherited by subclasses, unless the subclasses are defined in the same file.

Static variables help give the class object more functionality than just that of a
“factory” producing instances; it can approach being a complete and versatile
object in its own right. A class object can be used to coordinate the instances it
creates, dispense instances from lists of objects already created, or manage other
processes essential to the application. In the limiting case, when you need only
one object of a particular class, you can put all the object’s state into static
variables and use only class methods. This saves the step of allocating and
initializing an instance.

The Objective C Language 8-19

8

Note – It would also be possible to use external variables that were not
declared static , but the limited scope of static variables better serves the
purpose of encapsulating data into separate objects.

Initializing a Class Object

If a class object is to be used for anything besides allocating instances, it may
need to be initialized just as an instance is. Although programs do not allocate
class objects, Objective C does provide a way for programs to initialize them.

The run-time system sends an initialize message to every class object before
the class receives any other messages. This gives the class a chance to set up its
run-time environment before it is used. If no initialization is required, you do not
need to write an initialize method to respond to the message; the NSObject
class defines an empty version that your class can inherit and perform.

If a class makes use of static or global variables, the initialize method is a
good place to set their initial values. For example, if a class maintains an array
of instances, the initialize method could set up the array and even allocate
one or two default instances to have them ready.

Methods of the Root Class

All objects, classes and instances alike, need an interface to the run-time system.
Both class objects and instances should be able to introspect about their abilities
and to report their place in the inheritance hierarchy. It is the province of the
NSObject class to provide this interface.

So that NSObject ’s methods will not all have to be implemented twice—once to
provide a run-time interface for instances and again to duplicate that interface
for class objects—class objects are given special dispensation to perform instance
methods defined in the root class. When a class object receives a message that it
cannot respond to with a class method, the run-time system will see if there is a
root instance method that can respond. The only instance methods that a class
object can perform are those defined in the root class, and only if there is no class
method that can do the job.

For more on this peculiar ability of class objects to perform root instance
methods, see “Class Description” on page 7-1.

8-20 OpenStep Development Tools—September 1996

8

Class Names in Source Code

In source code, class names can be used in only two very different contexts.
These contexts reflect the dual role of a class as a data type and as an object:

• The class name can be used as a type name for a kind of object. For
example:

NSMatrix *anNSObject;
anNSObject = [[NSMatrix alloc] init];

Here an NSObject is statically typed to be an NSMatrix . The compiler will
expect it to have the data structure of an NSMatrix instance and the
instance methods defined and inherited by the NSMatrix class. Static
typing enables the compiler to do better type checking and makes source
code more self-documenting. See “Static Options” on page 9-22 for details.

Only instances can be statically typed; class objects cannot be, since they are
not members of a class, but rather belong to the Class data type.

• As the receiver in a message expression, the class name refers to the class
object. This usage was illustrated in several of the examples above. The class
name can stand for the class object only as a message receiver. In any other
context, you must ask the class object to reveal its id (by sending it a class
message). The example below passes the NSMatrix class as an argument in
an isKindOf: message.

if ([anObject isKindOfClass:[NSMatrix class]])
 . . .

It would have been illegal to simply use the name NSMatrix as the argument.
The class name can only be a receiver.

If you do not know the class name at compile time, but have it as a string at
run time, objc_lookUpClass() will return the class object:

if ([anObject isKindOfClass:objc_lookUpClass(aBuffer)])
 . . .

This function returns nil if the string passed is not a valid class name.

Class names compete in the same name space as variables and functions. A class
and a global variable cannot have the same name. Class names are about the
only names with global visibility in Objective C.

The Objective C Language 8-21

8

Defining a Class
Much of object-oriented programming consists of writing the code for new
objects—defining new classes. In Objective C, classes are defined in two parts:

• An interface that declares the methods and instance variables of the class and
names its superclass

• An implementation that actually defines the class (contains the code that
implements its methods)

Although the compiler does not require it, the interface and implementation are
usually separated into two different files. The interface file must be made
available to anyone who uses the class. You generally would not want to
distribute the implementation file that widely; users do not need source code for
the implementation.

A single file can declare or implement more than one class. Nevertheless, it is
customary to have a separate interface file for each class, if not also a separate
implementation file. Keeping class interfaces separate better reflects their status
as independent entities.

Interface and implementation files typically are named after the class. The
implementation file has a .m suffix, indicating that it contains Objective C source
code. The interface file can be assigned any other extension. Because it is
included in other source files, the interface file usually has the .h suffix typical
of header files. For example, the NSMatrix class would be declared in
NSMatrix.h and defined in NSMatrix.m .

Separating an object’s interface from its implementation fits well with the design
of object-oriented programs. An object is a self-contained entity that can be
viewed from the outside almost as a “black box.” Once you have determined
how an object will interact with other elements in your program—that is, once
you have declared its interface—you can freely alter its implementation without
affecting any other part of the application.

The Interface

The declaration of a class interface begins with the compiler directive
@interface and ends with the directive @end. (All Objective C directives to the
compiler begin with “@”.)

8-22 OpenStep Development Tools—September 1996

8

@interface ClassName : ItsSuperclass
{

instance variable declarations
}
method declarations
@end

The first line of the declaration presents the new class name and links it to its
superclass. The superclass defines the position of the new class in the inheritance
hierarchy, as discussed under ““Inheritance” on page 8-9. If the colon and
superclass name are omitted, the new class is declared as a root class, a rival to
the NSObject class.

Following the class declaration, braces enclose declarations of instance variables,
the data structures that will be part of each instance of the class. In OpenStep,
all instance variables are private and are accessed by using accessor methods
for getting and setting them.

Methods for the class are declared next, after the braces enclosing instance
variables and before the end of the class declaration. The names of methods
that can be used by class objects, class methods, are preceded by a plus sign:

+ alloc;

The methods that instances of a class can use, instance methods, are marked with
a minus sign:

- display;

Although it is not a common practice, you can define a class method and an
instance method with the same name. A method can also have the same name
as an instance variable. This is more common, especially if the method returns
the value in the variable.

Method return types are declared using the standard C syntax for casting one
type to another. For example:

- (int)tag;

Argument types are declared in the same way:

- setTag:(int)anInt;

If a return or argument type is not explicitly declared, it is assumed to be the
default type for methods and messages—an id . The alloc , display , and
setTag: methods illustrated in the examples above all return id s.

The Objective C Language 8-23

8

When there is more than one argument, they are declared within the method
name after the colons. Arguments break the name apart in the declaration, just
as in a message. For example:

- (void)selectCellAtRow:(int)row column:(int)col;

- (BOOL)getRow:(int *)row column:(int *)col ofCell:(NSCell *)aCell;

Methods that take a variable number of arguments declare them using a comma
and an ellipsis, just as a function would:. For example:

- makeGroup:group, ...;

Importing the Interface

The interface file must be included in any source module that depends on the
class interface—that includes any module that creates an instance of the class,
sends a message to invoke a method declared for the class, or mentions an
instance variable declared in the class. The interface is usually included with the
#import directive:

#import "NSMatrix.h"

This directive is identical to #include , except that it makes sure that the same
file is never included more than once. It is therefore preferred, and is used in
place of #include in code examples throughout OpenStep documentation.

To reflect the fact that a class definition builds on the definitions of inherited
classes, an interface file begins by importing the interface for its superclass:

#import "ItsSuperclass.h"

@interface ClassName : ItsSuperclass
{

instance variable declarations
}
method declarations
@end

This convention means that every interface file includes, indirectly, the interface
files for all inherited classes. When a source module imports a class interface, it
gets interfaces for the entire inheritance hierarchy that the class is built upon.

8-24 OpenStep Development Tools—September 1996

8

Referring to Other Classes

An interface file declares a class and, by importing its superclass, implicitly
contains declarations for all inherited classes, from NSObject on down through
its superclass. If the interface mentions classes not in this hierarchy, it must
import them explicitly—or, better, declare them with the @class directive:

@class NSMatrix, NSArray;

This directive simply informs the compiler that NSMatrix and NSArray are
class names. It does not import their interface files.

An interface file mentions class names when it statically types instance variables,
return values, and arguments. For example, the following declaration mentions
the NSArray class.

- getCells:(NSArray *)theNSCells;

Since declarations like this simply use the class name as a type and do not
depend on any details of the class interface (its methods and instance variables),
the @class directive gives the compiler sufficient forewarning of what to expect.
However, where the interface to a class is actually used (instances created,
messages sent), the class interface must be imported. Typically, an interface file
uses @class to declare classes, and the corresponding implementation file
imports their interfaces (since it will need to create instances of those classes or
send them messages).

The @class directive minimizes the amount of code seen by the compiler and
linker, and is therefore the simplest way to give a forward declaration of a class
name. Being simple, it avoids potential problems that may come with importing
files that import still other files. For example, if one class declares a statically
typed instance variable of another class, and their two interface files import each
other, neither class may compile correctly.

The Role of the Interface

The purpose of the interface file is to declare the new class to other source
modules (and to other programmers). It contains all the information they need
to work with the class (programmers might also appreciate a little
documentation).

• Through its list of method declarations, the interface file lets other modules
know what messages can be sent to the class object and instances of the class.
Every method that can be used outside the class definition is declared in the

The Objective C Language 8-25

8

interface file; methods that are internal to the class implementation can be
omitted. For added clarity however, it may be a good idea to group these
private methods together in a category defined in the class implementation
file (see “Categories” on page 9-1).

• It also lets the compiler know what instance variables an object contains and
programmers know what variables their subclasses will inherit. Although
instance variables are most naturally viewed as a matter of the
implementation of a class rather than its interface, they must nevertheless be
declared in the interface file. This is because the compiler must be aware of
the structure of an object where it is used, not just where it is defined. As a
programmer, however, you can generally ignore the instance variables of the
classes you use, except when defining a subclass.

• The interface file also tells users how the class is connected into the inheritance
hierarchy and what other classes—inherited or simply referred to somewhere
in the class—are needed.

The Implementation

The definition of a class is structured very much like its declaration. It begins
with an @implementation directive and ends with @end:

@implementation ClassName : ItsSuperclass
{

instance variable declarations
}
method definitions
@end

However, every implementation file must import its own interface. For example,
NSMatrix.m imports NSMatrix.h . Because the implementation does not need
to repeat any of the declarations it imports, it can safely omit the following:

• The name of the superclass

• The declarations of instance variables

This simplifies the implementation and devotes it mainly to method definitions:

#import "ClassName.h"

@implementation ClassName
method definitions
@end

8-26 OpenStep Development Tools—September 1996

8

Methods for a class are defined, like C functions, within a pair of braces. Before
the braces, they are declared in the same manner as in the interface file, but
without the semicolon. For example:

+ alloc
{
 . . .
}

- (int)tag
{
 . . .
}

- (void)setFrameOrigin:(NSPoint)newOrigin
{
 . . .
}

Methods that take a variable number of arguments handle them just as a
functions would:

#import <stdarg.h>

- getGroup:group, ...
{
 va_list ap;
 va_start(ap, group);
 . . .
}

Referring to Instance Variables

Note – In OpenStep, all instance variables are private and are accessed by
using accessor methods for getting and setting them.

By default, the definition of an instance method has all the instance variables of
a potential receiving object within its scope. It can refer to them simply by name.
Although the compiler creates the equivalent of C structures to store instance
variables, the exact nature of the structure is hidden. You do not need either of
the structure operators (‘.’ or ‘->’) to refer to an object’s data. For example, the
following method definition refers to the receiver’s tag instance variable:

The Objective C Language 8-27

8

- setTag:(int)anInt
{
 tag = anInt;
 . . .
}

Neither the receiving object nor its tag instance variable is declared as an
argument to this method, yet the instance variable falls within its scope. This
simplification of method syntax is a significant shorthand in the writing of
Objective C code.

The instance variables of the receiving object are not the only ones that you can
refer to within the implementation of a class. You can refer to any instance
variable of any object as long as the following two conditions are met:

• The instance variable must be within the scope of the class definition.
Normally that means the instance variable must be one that the class declares
or inherits. (Scope is discussed in more detail in “The Scope of Instance
Variables” on page 8-28.)

• The compiler must know to what kind of object the instance variable belongs .

When the instance variable belongs to the receiver (as it does in the setTag:
example above), this second condition is met automatically. The receiver’s type
is implicit but clear—it is the very type that the class defines.

When the instance variable belongs to an object that is not the receiver, the
object’s type must be made explicit to the compiler through static typing. In
referring to the instance variable of a statically typed object, the structure pointer
operator (‘->’) is used.

Suppose, for example, that the Sibling class declares a statically typed object,
twin , as an instance variable:

@interface Sibling : Object
{
 Sibling *twin;
 int gender;
 struct features *appearance;
}

As long as the instance variables of the statically typed object are within the
scope of the class (as they are here because twin is typed to the same class), a
Sibling method can set them directly:

8-28 OpenStep Development Tools—September 1996

8

- makeIdenticalTwin
{
 if (!twin) {
 twin = [[Sibling alloc] init];
 twin->gender = gender;
 twin->appearance = appearance;
 }
 return twin;
}

The Scope of Instance Variables

Although they are declared in the class interface, instance variables are more a
matter of the way a class is implemented than of the way it is used. An object’s
interface lies in its methods, not in its internal data structures.

Often there is a one-to-one correspondence between a method and an instance
variable, as in the following example:

- (int)tag
{
 return tag;
}

But this need not be the case. Some methods might return information not stored
in instance variables, and some instance variables might store information that
an object is unwilling to reveal.

As a class is revised from time to time, the choice of instance variables may
change, even though the methods it declares remain the same. As long as
messages are the vehicle for interacting with instances of the class, these changes
will not really affect its interface.

To enforce the ability of an object to hide its data, the compiler limits the scope of
instance variables—that is, limits their visibility within the program. But to
provide flexibility, it also lets you explicitly set the scope at three different levels.
(see Table 8-1 on page 8-29). Each level is marked by a compiler directive.

The Objective C Language 8-29

8

This is illustrated in Figure 8-4.

Figure 8-4 The Scope of Instance Variables

A directive applies to all the instance variables listed after it, up to the next
directive or the end of the list. In the following example, the age and
evaluation instance variables are private; name, job , and wage are protected;
and boss is public.

Table 8-1 Scope Levels for Instance Variables

Directive Meaning

@private The instance variable is accessible only within the class that
declares it.

@protected The instance variable is accessible within the class that declares
it and within classes that inherit it.

@public The instance variable is accessible everywhere.

The class that
declares the

instance variable

A class that
inherits the

instance variable

 @private

Unrelated code

@protected

@public

8-30 OpenStep Development Tools—September 1996

8

@interface Worker : Object
{
 char *name;
@private
 int age;
 char *evaluation;
@protected
 id job;
 float wage;
@public
 id boss;
}

By default, all unmarked instance variables (like name above) are @protected .

All instance variables that a class declares, no matter how they are marked, are
within the scope of the class definition. For example, a class that declares a job
instance variable, such as the Worker class shown in the example above, can
refer to it in a method definition:

- promoteTo:newPosition
{
 id old = job;
 job = newPosition;
 return old;
}

Obviously, if a class could not access its own instance variables, the instance
variables would be of no use whatsoever.

Normally, a class also has access to the instance variables it inherits. The ability
to refer to an instance variable is usually inherited along with the variable. It
makes sense for classes to have their entire data structures within their scope,
especially if you think of a class definition as merely an elaboration of the classes
it inherits from. The promoteTo: method illustrated above could just as well
have been defined in any class that inherits the job instance variable from the
Worker class.

However, there are reasons why you might want to restrict inheriting classes
from accessing an instance variable:

• Once a subclass accesses an inherited instance variable, the class that declares
the variable is tied to that part of its implementation. In later versions, it
cannot eliminate the variable or alter the role it plays without inadvertently
breaking the subclass.

The Objective C Language 8-31

8

• Moreover, if a subclass accesses an inherited instance variable and alters its
value, it may inadvertently introduce bugs in the class that declares the
variable, especially if the variable is involved in class-internal dependencies.

To limit an instance variable’s scope to just the class that declares it, you must
mark it @private .

At the other extreme, marking a variable @public makes it generally available,
even outside of class definitions that inherit or declare the variable. Normally, to
get information stored in an instance variable, other modules must send a
message requesting it. However, a public instance variable can be accessed
anywhere as if it were a field in a C structure.

Worker *ceo = [[Worker alloc] init];
ceo->boss = nil;

The object must be statically typed.

Marking instance variables @public defeats the ability of an object to hide its
data. It runs counter to a fundamental principle of object-oriented
programming—the encapsulation of data within objects where it is protected
from view and inadvertent error. Public instance variables should therefore be
avoided except in extraordinary cases.

How Messaging Works
In Objective C, messages are not bound to method implementations until run
time. The compiler converts a message expression,

[receiver message]

into a call on a messaging function, objc_msgSend() . This function takes the
receiver and the name of the method mentioned in the message—that is, the
method selector—as its two principal arguments:

objc_msgSend(receiver, selector)

Any arguments passed in the message are also handed to objc_msgSend():

objc_msgSend(receiver, selector, arg1, arg2, . . .)

The messaging function does everything necessary for dynamic binding:

• It first finds the procedure (method implementation) to which the selector
refers. Since the same method can be implemented differently by different
classes, the precise procedure that it finds depends on the class of the receiver.

8-32 OpenStep Development Tools—September 1996

8

• It then calls the procedure, passing it the receiving object (a pointer to its data),
along with any arguments that were specified for the method.

• Finally, it passes on the return value of the procedure as its own return value.

Note – The compiler generates calls to the messaging function. You should
never call it directly in the code you write.

The key to messaging lies in the structures that the compiler builds for each class
and object. Every class structure includes these two essential elements:

• A pointer to the superclass

• A class dispatch table. This table has entries that associate method selectors
with the class-specific addresses of the methods they identify. The selector for
the setFrameOrigin: method is associated with the address of (the
procedure that implements) setFrameOrigin: , the selector for the display
method is associated with display ’s address, and so on.

When a new object is created, memory for the object is allocated and its instance
variables are initialized. First among the object’s variables is a pointer to its class
structure. This pointer, ca , gives the object access to its class and, through the
class, to all the classes it inherits from.

These elements of class and object structure are illustrated in Figure 8-5 on
page 8-33.

The Objective C Language 8-33

8

Figure 8-5 Messaging Framework

When a message is sent to an object, the messaging function follows the object’s
isa pointer to the class structure, where it looks up the method selector in the
dispatch table. If it cannot find the selector there, objc_msgSend() follows the
pointer to the superclass and tries to find the selector in its dispatch table.

superclass

selector...address
selector...address
selector...address

The root class (NSObject)

The object’s superclass

The object’s class

superclass

selector...address
selector...address
selector...address

superclass

selector...address
selector...address
selector...address

isa
instance variable
instance variable

.

.

.

8-34 OpenStep Development Tools—September 1996

8

Successive failures cause objc_msgSend() to climb the class hierarchy until it
reaches the NSObject class. Once it locates the selector, it calls the method
entered in the table and passes it the receiving object’s data structure.

This is the way that method implementations are chosen at run time—or, in the
jargon of object-oriented programming, that methods are dynamically bound to
messages.

To speed the messaging process, the run-time system caches the selectors and
addresses of methods as they are used. There is a separate cache for each class,
and it can contain selectors for inherited methods as well as for methods defined
in the class. Before searching the dispatch tables, the messaging routine first
checks the cache of the receiving object’s class on the theory that a method that
was used once may likely be used again. If the method selector is in the cache,
messaging is only slightly slower than a function call. Once a program has been
running long enough to “warm up” its caches, almost all the messages it sends
will find a cached method. Caches grow dynamically to accommodate new
messages as the program runs.

Selectors

For efficiency, full ASCII names are not used as method selectors in compiled
code. Instead, the compiler writes each method name into a table, then pairs the
name with a unique identifier that will represent the method at run time. The
run-time system makes sure each identifier is unique: No two selectors are the
same, and all methods with the same name have the same selector. Compiled
selectors are assigned to a special type, SEL, to distinguish them from other data.
Valid selectors are never 0.

A compiled selector contains fields of coded information that aid run-time
messaging. You should therefore let the system assign SEL identifiers to
methods; it will not work to assign them arbitrarily yourself.

The @selector() directive lets Objective C source code refer to the compiled
selector, rather than to the full method name. Here the selector for
setFrameOrigin: is assigned to the mover variable:

SEL mover;
mover = @selector(setFrameOrigin:);

The Objective C Language 8-35

8

It is most efficient to assign values to SEL variables at compile time with the
@selector() directive. However, in some cases, a program may need to
convert a character string to a selector at run time. This can be done with the
sel_getUid() function:

mover = sel_getUid(aBuffer);

Conversion in the opposite direction is also possible. The sel_getName()
function returns a method name for a selector:

char *method;
method = sel_getName(mover);

Methods and Selectors

Compiled selectors identify method names, not method implementations.
NSView’s display method, for example, will have the same selector as
display methods defined in other classes. This is essential for polymorphism
and dynamic binding; it lets you send the same message to receivers belonging
to different classes. If there were one selector per method implementation, a
message would be no different than a function call.

A class method and an instance method with the same name are assigned the
same selector. However, because of their different domains, there is no confusion
between the two. A class could define a display class method in addition to a
display instance method.

Method Return and Argument Types

The messaging routine has access to method implementations only through
selectors, so it treats all methods with the same selector alike. It discovers the
return type of a method, and the data types of its arguments, from the selector.
Therefore, except for messages sent to statically typed receivers, dynamic
binding requires all implementations of identically named methods to have the
same return type and the same argument types. (Statically typed receivers are
an exception to this rule, since the compiler can learn about the method
implementation from the class type.)

Although identically named class methods and instance methods are
represented by the same selector, they can have different argument and return
types.

8-36 OpenStep Development Tools—September 1996

8

Varying the Message at Run Time

The perform:, perform:withObject: , and
perform:withObject:withObject : methods, defined in the NSObject
class, take SEL identifiers as their initial arguments. All three methods map
directly into the messaging function. For example,

[friend perform:@selector(gossipAbout:) withObject:aNeighbor];

is equivalent to:

[friend gossipAbout:aNeighbor];

These methods make it possible to vary a message at run time, just as it is
possible to vary the object that receives the message. Variable names can be used
in both halves of a message expression:

id helper = getTheReceiver();
SEL request = getTheSelector();
[helper perform:request];

In this example, the receiver (helper) is chosen at run time (by the fictitious
getTheReceiver() function), and the method the receiver is asked to perform
(request) is also determined at run time (by the equally fictitious
getTheSelector() function).

Note – perform: and its companion methods return an id . If the method that
is performed returns a different type, it should be cast to the proper type.
(However, casting will not work for all types; the method should return a
pointer or a type compatible with a pointer.)

The Target-Action Paradigm

In its treatment of user-interface controls, the OpenStep Application Kit makes
good use of the ability to vary both the receiver and the message.

Controls are graphical devices that can be used to give instructions to an
application. Most resemble real-world control devices such as buttons, switches,
knobs, text fields, dials, menu items, and the like. In software, these devices
stand between the application and the user. They interpret events coming from
hardware devices like the keyboard and mouse and translate them into

The Objective C Language 8-37

8

application-specific instructions. For example, a button labeled “Find” would
translate a mouse click into an instruction for the application to start searching
for something.

The Application Kit defines a framework for creating control devices and defines
a few “off-the-shelf” devices of its own. For example, the NSButtonCell class
defines an object that you can assign to an NSMatrix and initialize with a size, a
label, a picture, a font, and a keyboard alternative. When the user clicks the
button (or uses the keyboard alternative), the NSButtonCell sends a message
instructing the application to do something. To do this, an NSButtonCell must
be initialized not just with an image, a size, and a label, but with directions on
what message to send and to whom to send it. Accordingly, an NSButtonCell
can be initialized for an action message, the method selector it should use in the
message it sends, and a target, the object that should receive the message.

[myNSButtonCell setAction:@selector(reapTheWind:)];
[myNSButtonCell setTarget:anObject];

The NSButtonCell sends the message using NSObject ’s
perform:withObject method. All action messages take a single argument,
the id of the control device sending the message.

If Objective C did not allow the message to be varied, all NSButtonCells would
have to send the same message; the name of the method would be frozen in the
NSButtonCell source code. Instead of simply implementing a mechanism for
translating user actions into action messages, NSButtonCells and other
controls would have to constrain the content of the message. This would make
it difficult for any object to respond to more than one NSButtonCell . There
would either have to be one target for each button, or the target object would
have to discover which button the message came from and act accordingly. Each
time you rearranged the user interface, you would also have to reimplement the
method that responds to the action message. This would be an unnecessary
complication that Objective C happily avoids.

Avoiding Messaging Errors

If an object receives a message to perform a method that is not in its repertoire,
an error results. It is the same sort of error as calling a nonexistent function. But
because messaging occurs at run time, the error often will not be evident until
the program executes.

8-38 OpenStep Development Tools—September 1996

8

It is relatively easy to avoid this error when the message selector is constant and
the class of the receiving object is known. As you are programming, you can
check to be sure that the receiver is able to respond. If the receiver is statically
typed, the compiler will check for you.

However, if the message selector or the class of the receiver varies, it may be
necessary to postpone this check until run time. The respondsToSelector:
method, defined in the NSObject protocol, determines whether a potential
receiver can respond to a potential message. It takes the method selector as an
argument, and returns whether the receiver has access to a method matching the
selector:

if ([anObject respondsToSelector:@selector(moveTo::)])
 [anObject moveTo:0.0 :0.0];
else
 fprintf(stderr, "%s can’t be moved\n", [anObject name]);

The respondsToSelector: test is especially important when sending
messages to objects that you do not have control over at compile time. For
example, if you write code that sends a message to an object represented by a
variable that others can set, you should check to be sure the receiver implements
a method that can respond to the message.

Note – An object can also arrange to have messages it receives forwarded to
other objects, if it cannot respond to them directly itself. In that case, it will
appear that the object cannot handle the message, even though it responds to it
indirectly by assigning it to another object.

Hidden Arguments

When the messaging function finds the procedure that implements a method, it
calls the procedure and passes it all the arguments in the message. It also passes
the procedure two hidden arguments:

• The receiving object
• The selector for the method

These arguments give every method implementation explicit information about
the two halves of the message expression that invoked it. They are said to be
“hidden” because they are not declared in the source code that defines the
method. They are inserted into the implementation when the code is compiled.

The Objective C Language 8-39

8

Although these arguments are not explicitly declared, source code can still refer
to them just as it can refer to the receiving object’s instance variables. A method
refers to the receiving object as self , and to its own selector as _cmd. In the
example below, _cmd refers to the selector for the strange method and self to
the object that receives a strange message.

- strange
{
 id target = getTheReceiver();
 SEL action = getTheMethod();

 if (target == self || action == _cmd)
 return nil;
 return [target perform:action];
}

Of the two arguments, self is the more useful. It is, in fact, the way the receiving
object’s instance variables are made available to the method definition.

“Messages to self and super” discusses self in more detail.

Messages to self and super

Objective C provides two terms that can be used within a method definition to
refer to the object that performs the method—self and super .

Suppose, for example, that you define a reposition method that needs to
change the coordinates of whatever object it acts on. It can invoke the
setFrameOrigin: method to make the change. All it needs to do is send a
setFrameOrigin: message to the very same object that the reposition
message itself was sent to. When you are writing the reposition code, you can
refer to that object as either self or super . The reposition method could read
either:

- reposition
{
 . . .
 [self setFrameOrigin:someOrigin];
 . . .
}

or:

8-40 OpenStep Development Tools—September 1996

8

- reposition
{
 . . .
 [super moveTo:someX :someY];
 . . .
}

Here self and super both refer to the object receiving a reposition message,
whatever object that may happen to be. The two terms are quite different,
however. The term self is one of the hidden arguments that the messaging
routine passes to every method; it is a local variable that can be used freely
within a method implementation, just as the names of instance variables can be.
The term super substitutes for self only as the receiver in a message
expression. As receivers, the two terms differ principally in how they affect the
messaging process:

• self searches for the method implementation in the usual manner, starting in
the dispatch table of the receiving object’s class. In the example above, it
would begin with the class of the object receiving the reposition message.

• super starts the search for the method implementation in a very different
place. It begins in the superclass of the class that defines the method where
super appears. In the example above, it would begin with the superclass of
the class where reposition is defined.

Wherever super receives a message, the compiler substitutes another messaging
routine for objc_msgSend() . The substitute routine looks directly to the
superclass of the defining class—that is, to the superclass of the class sending the
message to super —rather than to the class of the object receiving the message.

An Example

The difference between self and super becomes clear in a hierarchy of three
classes. Suppose, for example, that we create an object belonging to a class called
Low. Low’s superclass is Mid ; Mid ’s superclass is High . All three classes define
a method called negotiate , which they use for a variety of purposes. In
addition, Mid defines an ambitious method called makeLastingPeace , which
also has need of the negotiate method. This is illustrated in Figure 8-6 on
page 8-41.

The Objective C Language 8-41

8

Figure 8-6 High, Mid, and Low

Now we send a message to our Low object to perform the makeLastingPeace
method, and makeLastingPeace , in turn, sends a negotiate message to the
same Low object. If source code calls this object self , the messaging routine will
find the version of negotiate defined in Low, self ’s class.

- makeLastingPeace
{
 [self negotiate];
 . . .
}

superclass

- negotiate

superclass

- negotiate

superclass

- negotiate
-makeLastingPeace

High

Mid

Low

8-42 OpenStep Development Tools—September 1996

8

 However, if source code calls this object super , the messaging routine will find
the version of negotiate defined in High .

- makeLastingPeace
{
 [super negotiate];
 . . .
}

 It ignores the receiving object’s class (Low) and skips to the superclass of Mid ,
since Mid is where makeLastingPeace is defined. Neither message finds Mid ’s
version of negotiate .

As this example illustrates, super provides a way to bypass a method that
overrides another method. Here it enabled makeLastingPeace to avoid the
Mid version of negotiate that redefined the original High version.

Not being able to reach Mid ’s version of negotiate may seem like a flaw, but,
under the circumstances, it is right to avoid it:

• The author of the Low class intentionally overrode Mid ’s version of
negotiate so that instances of the Low class (and its subclasses) would
invoke the redefined version of the method instead. The designer of Low did
not want Low objects to perform the inherited method.

• In sending the message to super , the author of Mid ’s makeLastingPeace
method intentionally skipped over Mid ’s version of negotiate (and over
any versions that might be defined in classes like Low that inherit from Mid)
to perform the version defined in the High class. Mid ’s designer wanted to
use the High version of negotiate and no other.

Mid ’s version of negotiate could still be used, but it would take a direct
message to a Mid instance to do it.

Using super

Messages to super allow method implementations to be distributed over more
than one class. You can override an existing method to modify or add to it, and
still incorporate the original method in the following modification:

- negotiate
{
 . . .
 return [super negotiate];
}

The Objective C Language 8-43

8

For some tasks, each class in the inheritance hierarchy can implement a method
that does part of the job, and pass the message on to super for the rest. The init
method, which initializes a newly allocated instance, and the write: method,
which archives an object by writing it to a data stream, are designed to work this
way. Each write: method has responsibility for writing the instance variables
defined in its class. But before doing so, it sends a write: message to super to
have the classes from which it inherits archive their instance variables. Each
version of write: follows this same procedure, so classes write their instance
variables in the order of inheritance:

- write:(NXTypedStream *)stream
{
 [super write:stream];
 . . .
 return self;
}

It is also possible to concentrate core functionality in one method defined in a
superclass, and have subclasses incorporate the method through messages to
super . For example, every class method that creates a new instance must
allocate storage for the new object and initialize its isa pointer to the class
structure. This is typically left to the alloc and allocFromZone: methods
defined in the NSObject class. If another class overrides these methods for any
reason (a rare case), it can still get the basic functionality by sending a message
to super .

Redefining self

super is simply a flag to the compiler telling it where to begin searching for the
method to perform; it is used only as the receiver of a message. But self is a
variable name that can be used in any number of ways, even assigned a new
value.

There is a tendency to do just that in definitions of class methods. Class methods
are often concerned, not with the class object, but with instances of the class. For
example, a method might combine allocation and initialization of an instance:

+ newTag:(int)anInt
{
 return [[self alloc] initTag:anInt];
}

8-44 OpenStep Development Tools—September 1996

8

In such a method, it is tempting to send messages to the instance and to call the
instance self , just as in an instance method. But that would be an error. Both
self and super refer to the receiving object—the object that gets a message
telling it to perform the method. Inside an instance method, self refers to the
instance; but inside a class method, self refers to the class object.

Before a class method can send a message telling self to perform an instance
method, it must redefine self to be the instance:

+ newTag:(int)anInt andColor:(NSColor)aColor
{
 self = [[self alloc] initTag:anInt];
 [self setColor:aColor];
 return self;
}

The method shown above is a class method, so, initially, self refers to the class
object. It is as the class object that self receives the alloc message. It is then
redefined to be the instance that alloc returns and initTag: initializes. It is
as the new instance that it receives the setColor: message.

To avoid confusion, it is usually better to use a variable other than self to refer
to an instance inside a class method:

+ newTag:(int)anInt andColor:(NSColor)aColor
{
 id newInstance = [[self alloc] initTag:anInt];
 [newInstance setColor:aColor];
 return newInstance;
}

Note – In these examples, the class method sends messages (initTag: and
setColor:) to initialize the instance. It does not assign a new value directly
to an instance variable as an instance method might have done:

tag = anInt;
color = NS_REDCOLOR;

Only instance variables of the receiver can be directly set this way. Since the
receiver for a class method (the class object) has no instance variables, this syntax
cannot be used. However, if newInstance had been statically typed, something
similar would have been possible:

newInstance->tag = anInt;

The Objective C Language 8-45

8

See ““Referring to Instance Variables” on page 8-26 for more on when this syntax
is permitted.

8-46 OpenStep Development Tools—September 1996

8

9-1

The Objective C Extensions 9

The preceding chapter has all you need to know about Objective C to define
classes and design programs in the language. It covers basic Objective C syntax
and explains the messaging process in detail.

Class definitions are at the heart of object-oriented programming, but they're
not the only mechanism for structuring object definitions in Objective C. This
chapter discusses two other ways of declaring methods and associating them
with a class:

• Categories can compartmentalize a class definition or extend an existing
one.

• Protocols declare methods that can be implemented by any class.

The chapter also explains how static typing works and takes up some lesser
used features of Objective C, including ways to temporarily overcome its
inherent dynamism.

Categories
You can add methods to a class by declaring them in an interface file under a
category name and defining them in an implementation file under the same
name. The category name indicates that the methods are additions to a class
declared elsewhere, not a new class.

9-2 OpenStep Development Tools—September 1996

9

A category can be an alternative to a subclass. Rather than define a subclass to
extend an existing class, through a category you can add methods to the class
directly. For example, you could add categories to NSMatrix and other
OpenStep classes. As in the case of a subclass, you do not need source code for
the class you're extending.

The methods the category adds become part of the class type. For example,
methods added to the NSMatrix class in a category will be among the
methods the compiler will expect an NSMatrix instance to have in its
repertoire. Methods added to the NSMatrix class in a subclass would not be
included in the NSMatrix type. (This matters only for statically typed objects,
since static typing is the only way the compiler can know an object's class.)

Category methods can do anything that methods defined in the class proper
can do. At run time, there is no difference. The methods the category adds to
the class are inherited by all the class's subclasses, just like other methods.

Adding to a Class

The declaration of a category interface looks very much like a class interface
declaration-except the category name is listed within parentheses after the
class name and the superclass is not mentioned. The category must import the
interface file for the class it extends:

#import "ClassName.h"

@interface ClassName (CategoryName)

method declarations

@end

The implementation, as usual, imports its own interface. Assuming that
interface and implementation files are named after the category, a category
implementation looks like this:

#import "CategoryName.h"

@implementation ClassName (CategoryName)

method definitions

@end

The Objective C Extensions 9-3

9

A category cannot declare any new instance variables for the class; it includes
only methods. However, all instance variables within the scope of the class are
also within the scope of the category. That includes all instance variables
declared by the class, even ones declared @private .

There's no limit to the number of categories that you can add to a class, but
each category name must be different, and each should declare and define a
different set of methods.

The methods added in a category can be used to extend the functionality of the
class or override methods the class inherits. A category can also override
methods declared in the class interface. However, it cannot reliably override
methods declared in another category of the same class. A category is not a
substitute for a subclass. It is best if categories do not attempt to redefine
methods the class defines elsewhere; a class shouldn't define the same method
more than once.

When a category overrides an inherited method, the new version can, as usual,
incorporate the inherited version through a message to super. But there is no
way for a category method to incorporate a method with the same name
defined for the same class.

How Categories are Used

Categories can be used to extend classes defined by other implementors-for
example, you can add methods to the classes defined in the OpenStep software
kits. The added methods will be inherited by subclasses and will be
indistinguishable at run time from the original methods of the class.

Categories can also be used to distribute the implementation of a new class
into separate source files-for example, you could group the methods of a large
class into several categories and put each category in a different file. When
used like this, categories can benefit the development process in a number of
ways:

• They provide a simple way of grouping related methods. Similar methods
defined in different classes can be kept together in the same source file.

• They simplify the management of a large class when more than one
developer is contributing to the class definition.

• They let you achieve some of the benefits of incremental compilation for a
very large class.

9-4 OpenStep Development Tools—September 1996

9

• They can help improve locality of reference for commonly used methods.

• They enable you to configure a class differently for different applications,
without having to maintain different versions of the same source code.

Categories are also used to declare informal protocols, as discussed under
“Protocols” on page 8-48 below.

Categories of the Root Class

A category can add methods to any class, including the root NSObject class.
Methods added to NSObject become available to all classes that are linked to
your code. While this can be useful at times, it can also be quite dangerous.
Although it may seem that the modifications the category makes are well
understood and of limited impact, inheritance gives them a wide scope. You
may be making unintended changes to unseen classes; you may not know all
the consequences of what you are doing. Moreover, others who are unaware of
your changes will not understand what they're doing.

In addition, there are two other considerations to keep in mind when
implementing methods for the root class:

• Messages to super are invalid (there is no superclass).

• Class objects can perform instance methods defined in the root class.

Normally, class objects can perform only class methods. But instance methods
defined in the root class are a special case. They define an interface to the run-
time system that all objects inherit. Class objects are full-fledged objects and
need to share the same interface.

This feature means that you need to take into account the possibility that an
instance method you define in a category of the NSObject class might be
performed not only by instances but by class objects as well. For example,
within the body of the method, self might mean a class object as well as an
instance. See Chapter 7, “The NSObject Class,” for more information on class
access to root instance methods.

The Objective C Extensions 9-5

9

Protocols
Class and category interfaces declare methods that are associated with a
particular class-mainly methods that the class implements. Informal and
formal protocols, on the other hand, declare methods not associated with a
class, but which any class, and perhaps many classes, might implement.

A protocol is simply a list of method declarations, unattached to a class
definition. For example, these methods that report user actions on the mouse
could be gathered into a protocol:

- mouseDown:(NSEvent *)theEvent;

- mouseDragged:(NSEvent *)theEvent;

- mouseUp:(NSEvent *)theEvent;

Any class that wanted to respond to mouse events could adopt the protocol
and implement its methods.

Protocols free method declarations from dependency on the class hierarchy, so
they can be used in ways that classes and categories cannot. Protocols list
methods that are (or may be) implemented somewhere, but the identity of the
class that implements them is not of interest. What is of interest is whether or
not a particular class conforms to the protocol-whether it has implementations
of the methods the protocol declares. Thus objects can be grouped into types
not just on the basis of similarities due to the fact that they inherit from the
same class, but also on the basis of their similarity in conforming to the same
protocol. Classes in unrelated branches of the inheritance hierarchy might be
typed alike because they conform to the same protocol.

Protocols can play a significant role in object-oriented design, especially where
a project is divided among many implementors or it incorporates objects
developed in other projects. OpenStep software uses them heavily to support
interprocess communication through Objective C messages.

However, an Objective C program does not need to use protocols. Unlike class
definitions and message expressions, they are optional. Some OpenStep
software kits use them; some do not. It all depends on the task at hand.

How Protocols are Used

Protocols are useful in at least three different situations:

• To declare methods that others are expected to implement

9-6 OpenStep Development Tools—September 1996

9

• To declare the interface to an object while concealing its class

• To capture similarities among classes that are not hierarchically related

The following sections discuss these situations and the roles protocols can play.

Methods for Others to Implement

If you know the class of an object, you can look at its interface declaration (and
the interface declarations of the classes it inherits from) to find what messages
it responds to. These declarations advertise the messages it can receive.
Protocols provide a way for it to also advertise the messages it sends.

Communication works both ways; objects send messages as well as receive
them. For example, an object might delegate responsibility for a certain
operation to another object, or it may on occasion simply need to ask another
object for information. In some cases, an object might be willing to notify other
objects of its actions so that they can take whatever collateral measures might
be required.

If you develop the class of the sender and the class of the receiver as part of the
same project (or if someone else has supplied you with the receiver and its
interface file), this communication is easily coordinated. The sender simply
imports the interface file of the receiver. The imported file declares the method
selectors the sender uses in the messages it sends.

However, if you develop an object that sends messages to objects that are not
yet defined-objects that you are leaving for others to implement-you will not
have the receiver's interface file. You need another way to declare the methods
you use in messages but do not implement. A protocol serves this purpose. It
informs the compiler about methods the class uses and also informs other
implementors of the methods they need to define to have their objects work
with yours.

Suppose, for example, that you develop an object that asks for the assistance of
another object by sending it helpOut : and other messages. You provide an
assistant instance variable to record the outlet for these messages and define a
companion method to set the instance variable. This method lets other objects
register themselves as potential recipients of your object's messages:

- setAssistant:anNSObject

{

 assistant = anNSObject;

The Objective C Extensions 9-7

9

 return self;

}

Then, whenever a message is to be sent to the assistant, a check is made to be
sure that the receiver implements a method that can respond:

- (BOOL)doWork

{

 . . .

 if ([assistant respondsToSelector:@selector(helpOut:)]) {

 [assistant helpOut:self];

 return YES;

 }

 return NO;

}

Since, at the time you write this code, you cannot know what kind of object
might register itself as the assistant, you can only declare a protocol for the
helpOut: method; you cannot import the interface file of the class that
implements it.

Anonymous Objects

A protocol can also be used to declare the methods of an anonymous object, an
object of unknown class. An anonymous object may represent a service or
handle a limited set of functions, especially where only one object of its kind is
needed. (Objects that play a fundamental role in defining an application's
architecture and objects that you must initialize before using are not good
candidates for anonymity.)

Objects cannot be anonymous to their developers, of course, but they can be
anonymous when the developer supplies them to someone else. For example,
an anonymous object might be part of a software kit or be located in a remote
process:

• Someone who supplies a software kit or a suite of objects for others to use
can include objects that are not identified by a class name or an interface
file. Lacking the name and class interface, users have no way of creating
instances of the class. Instead, the supplier must provide a ready-made
instance. Typically, a method in another class returns a usable object:

9-8 OpenStep Development Tools—September 1996

9

id formatter = [receiver formattingService];

The object returned by the method is an object without a class identity, at
least not one the supplier is willing to reveal. For it to be of any use at all,
the supplier must be willing to identify at least some of the messages that it
can respond to. This is done by associating the object with a list of methods
declared in a protocol.

• It is possible to send Objective C messages to remote objects-objects in other
applications. (“Remote Messaging” on page 9-15, discusses this possibility
in more detail.)

Each application has its own structure, classes, and internal logic. But you
do not need to know how another application works or what its
components are to communicate with it. As an outsider, all you need to
know is what messages you can send (the protocol) and where to send them
(the receiver).

An application that publishes one of its objects as a potential receiver of
remote messages must also publish a protocol declaring the methods the
object will use to respond to those messages. It does not have to disclose
anything else about the object. The sending application does not need to
know the class of the object or use the class in its own design. All it needs is
the protocol.

Protocols make anonymous objects possible. Without a protocol, there
would be no way to declare an interface to an object without identifying its
class.

Even though the supplier of an anonymous object will not reveal its class,
the object itself will reveal it at run time. A class message will return the
anonymous object's class. The class object can then be queried with the
name and superclass methods. However, there's usually little point in
discovering this extra information; the information in the protocol is
sufficient.

The Objective C Extensions 9-9

9

Nonhierarchical Similarities

If more than one class implements a set of methods, those classes are often
grouped under an abstract class that declares the methods they have in
common. Each subclass may reimplement the methods in its own way, but the
inheritance hierarchy and the common declaration in the abstract class
captures the essential similarity between the subclasses.

However, sometimes it's not possible to group common methods in an abstract
class. Classes that are unrelated in most respects might nevertheless need to
implement some similar methods. This limited similarity may not justify a
hierarchical relationship. For example, many different kinds of classes might
implement methods to facilitate reference counting:

- setRefCount:(int)count;

- (int)refCount;

- incrementCount;

- decrementCount;

These methods could be grouped into a protocol and the similarity between
implementing classes accounted for by noting that they all conform to the same
protocol.

Objects can be typed by this similarity (the protocols they conform to), rather
than by their class. For example, an NSMatrix must communicate with the
objects that represent its cells. The NSMatrix could require each of these
objects to be a kind of NSCell (a type based on class) and rely on the fact that
all objects that inherit from the NSCell class will have the methods needed to
respond to NSMatrix messages. Alternatively, the NSMatrix could require
objects representing cells to have methods that can respond to a particular set
of messages (a type based on protocol). In this case, the NSMatrix would not
care what class a cell object belonged to, just that it implemented the methods.

Informal Protocols

The simplest way of declaring a protocol is to group the methods in a category
declaration:

@interface NSObject (RefCounting)

- setRefCount:(int)count;

- (int)refCount;

9-10 OpenStep Development Tools—September 1996

9

- incrementCount;

- decrementCount;

@end

Informal protocols are typically declared as categories of the NSObject class,
since that broadly associates the method names with any class that inherits
from NSObject . Since all classes inherit from the root class, the methods are
not restricted to any part of the inheritance hierarchy. (It would also be
possible to declare an informal protocol as a category of another class to limit it
to a certain branch of the inheritance hierarchy, but there is little reason to do
so.)

When used to declare a protocol, a category interface does not have a
corresponding implementation. Instead, classes that implement the protocol
declare the methods again in their own interface files and define them along
with other methods in their implementation files.

An informal protocol bends the rules of category declarations to list a group of
methods but not associate them with any particular class or implementation.

Being informal, protocols declared in categories do not receive much language
support. There is no type checking at compile time nor a check at run time to
see whether an object conforms to the protocol. To get these benefits, you must
use a formal protocol.

Formal Protocols

The Objective C language provides a way to formally declare a list of methods
as a protocol. Formal protocols are supported by the language and the run-
time system. For example, the compiler can check for types based on protocols,
and objects can introspect at run time to report whether or not they conform to
a protocol.

Formal protocols are declared with the @protocol directive:

@protocol ProtocolName

method declarations

@end

For example, the reference-counting protocol could be declared like this:

@protocol ReferenceCounting

- setRefCount:(int)count;

The Objective C Extensions 9-11

9

- (int)refCount;

- incrementCount;

- decrementCount;

@end

Unlike class names, protocol names do not have global visibility. They live in
their own name space.

A class is said to adopt a formal protocol if it agrees to implement the methods
the protocol declares. Class declarations list the names of adopted protocols
within angle brackets after the superclass name:

@interface ClassName : ItsSuperclass < protocol list >

Categories adopt protocols in much the same way:

@interface ClassName (CategoryName) < protocol list >

Names in the protocol list are separated by commas.

A class or category that adopts a protocol must import the header file where
the protocol is declared. The methods declared in the adopted protocol are not
declared elsewhere in the class or category interface.

It is possible for a class to simply adopt protocols and declare no other
methods. For example, this class declaration,

@interface Formatter : NSObject < Formatting, Prettifying >

@end

adopts the Formatting and Prettifying protocols, but declares no instance
variables or methods of its own.

A class or category that adopts a protocol is obligated to implement all the
methods the protocol declares. The compiler will issue a warning if it does not.
The Formatter class above would define all the methods declared in the two
protocols it adopts, in addition to any it might have declared itself.

Adopting a protocol is similar in some ways to declaring a superclass. Both
assign methods to the new class. The superclass declaration assigns it inherited
methods; the protocol assigns it methods declared in the protocol list.

9-12 OpenStep Development Tools—September 1996

9

Protocol Objects

Just as classes are represented at run time by class objects and methods by
selector codes, formal protocols are represented by a special data type-
instances of the Protocol class. Source code that deals with a protocol (other
than to use it in a type specification) must refer to the Protocol object.

In many ways, protocols are similar to class definitions. They both declare
methods, and at run time they're both represented by objects-classes by class
objects and protocols by Protocol objects. Like class objects, Protocol objects are
created automatically from the definitions and declarations found in source
code and are used by the run-time system. They're not allocated and initialized
in program source code.

Source code can refer to a Protocol object using the @protocol() directive-the
same directive that declares a protocol, except that here it has a set of trailing
parentheses. The parentheses enclose the protocol name:

Protocol *counter = @protocol(ReferenceCounting);

This is the only way that source code can conjure up a Protocol object. Unlike a
class name, a protocol name does not designate the object-except inside
@protocol() .

The compiler creates a Protocol object for each protocol declaration it
encounters, but only if the protocol is also:

• Adopted by a class, or

• Referred to somewhere in source code (using @protocol()).

Protocols that are declared but not used (except for type checking as described
below) are not represented by Protocol objects.

Conforming to a Protocol

A class is said to conform to a formal protocol if it adopts the protocol or
inherits from a class that adopts it. An instance of a class is said to conform to
the same set of protocols its class conforms to.

Since a class must implement all the methods declared in the protocols it
adopts, and those methods are inherited by its subclasses, saying that a class or
an instance conforms to a protocol is tantamount to saying that it has in its
repertoire all the methods that the protocol declares.

The Objective C Extensions 9-13

9

It is possible to check whether an object conforms to a protocol by sending it a
conformsTo: message.

if ([receiver conformsTo:@protocol(ReferenceCounting)])

 [receiver incrementCount];

The conformsTo: test is very much like the respondsTo: test for a single
method, except that it tests whether a protocol has been adopted (and
presumably all the methods it declares implemented) rather than just whether
one particular method has been implemented. Because it checks for a whole list
of methods, conformsTo: can be more efficient than respondsTo: .

The conformsTo: test is also very much like the isKindOf: test, except that
it tests for a type based on a protocol rather than a type based on the
inheritance hierarchy.

Type Checking

Type declarations for objects can be extended to include formal protocols.
Protocols thus offer the possibility of another level of type checking by the
compiler, one that is more abstract since it is not tied to particular
implementations.

In a type declaration, protocol names are listed between angle brackets after
the type name:

- (id <Formatting>)formattingService;

id <ReferenceCounting, AutoFreeing> anObject;

Just as static typing permits the compiler to test for a type based on the class
hierarchy, this syntax permits the compiler to test for a type based on
conformance to a protocol.

For example, if Formatter is an abstract class, this declaration

Formatter *anObject;

groups all objects that inherit from Formatter into a type and permits the
compiler to check assignments against that type.

Similarly, this declaration,

id <Formatting> anObject;

9-14 OpenStep Development Tools—September 1996

9

groups all objects that conform to the Formatting protocol into a type,
regardless of their positions in the class hierarchy. The compiler can check to be
sure that only objects that conform to the protocol are assigned to the type.

In each case, the type groups similar objects-either because they share a
common inheritance, or because they converge on a common set of methods.

The two types can be combined in a single declaration:

Formatter <Formatting> *anObject;

Protocols cannot be used to type class objects. Only instances can be statically
typed to a protocol, just as only instances can be statically typed to a class.
(However, at run time, both classes and instances will respond to a
conformsTo: message.)

Protocols within Protocols

One protocol can incorporate others using the same syntax that classes use to
adopt a protocol:

@protocol ProtocolName < protocol list >

All the protocols listed between angle brackets are considered part of the
ProtocolName protocol. For example, if the Paging protocol incorporates the
Formatting protocol,

@protocol Paging < Formatting >

any object that conforms to the Paging protocol will also conform to
Formatting . Type declarations

id <Paging> someObject;

and conformsTo: messages

if ([anotherObject conformsTo:@protocol(Paging)])

 . . .

need mention only the Paging protocol to test for conformance to
Formatting as well.

When a class adopts a protocol, it must implement the methods the protocol
declares, as mentioned earlier. In addition, it must conform to any protocols
the adopted protocol incorporates. If an incorporated protocol incorporates still
other protocols, the class must also conform to them. A class can conform to an
incorporated protocol by either:

The Objective C Extensions 9-15

9

Implementing the methods the protocol declares, or

Inheriting from a class that adopts the protocol and implements the methods.

Suppose, for example, that the Pager class adopts the Paging protocol. If
Pager is a subclass of NSObject ,

@interface Pager : NSObject < Paging >

it must implement all the Paging methods, including those declared in the
incorporated Formatting protocol. It adopts the Formatting protocol along
with Paging .

On the other hand, if Pager is a subclass of Formatter (a class that
independently adopts the Formatting protocol),

@interface Pager : Formatter < Paging >

it must implement all the methods declared in the Paging protocol proper, but
not those declared in Formatting . Pager inherits conformance to the
Formatting protocol from Formatter .

Remote Messaging
Like most other programming languages, Objective C was initially designed
for programs that are executed as a single process in a single address space.

Nevertheless, the object-oriented model, where communication takes place
between relatively self-contained units through messages that are resolved at
run-time, would seem well suited for interprocess communication as well. It is
not hard to imagine Objective C messages between objects that reside in
different address spaces (that is, in different tasks) or in different threads of
execution of the same task.

For example, in a typical server-client interaction, the client task might send its
requests to a designated object in the server, and the server might target
specific client objects for the notifications and other information it sends.

Or imagine an interactive application that needs to do a good deal of
computation to carry out a user command. It could simply put up an attention
panel telling the user to wait while it was busy, or it could isolate the
processing work in a subordinate task, leaving the main part of the application
free to accept user input. Objects in the two tasks would communicate through
Objective C messages.

9-16 OpenStep Development Tools—September 1996

9

Similarly, several separate processes could cooperate on the editing of a single
document. There could be a different editing tool for each type of data in the
document. One task might be in charge of presenting a unified user interface
on-screen and of sorting out which user instructions were the responsibility of
which editing tool. Each cooperating task could be written in Objective C, with
Objective C messages being the vehicle of communication between the user
interface and the tools and between one tool and another.

Distributed Objects

Remote messaging in Objective C requires a run-time system that can establish
connections between objects in different address spaces, recognize when a
message is intended for a remote address, and transfer data from one address
space to another. It must also mediate between the separate schedules of the
two tasks; it has to hold messages until their remote receivers are free to
respond to them.

OpenStep includes a distributed objects architecture that is essentially this kind
of extension to the run-time system. Using distributed objects, you can send
Objective C messages to objects in other tasks or have messages executed in
other threads of the same task. (When remote messages are sent between two
threads of the same task, the threads are treated exactly like threads in different
tasks.)

To send a remote message, an application must first establish a connection with
the remote receiver. Establishing the connection gives the application a proxy
for the remote object in its own address space. It then communicates with the
remote object through the proxy. The proxy assumes the identity of the remote
object; it has no identity of its own. The application is able to regard the proxy
as if it were the remote object; for most purposes, it is the remote object.

Remote messaging is diagrammed in Figure 9-1, where object A communicates
with object B through a proxy, and messages for B wait in a queue until B is
ready to respond to them:

The Objective C Extensions 9-17

9

Figure 9-1 Remote Messages

The sender and receiver are in different tasks and are scheduled independently
of each other. So there is no guarantee that the receiver will be free to accept a
message when the sender is ready to send it. Therefore, arriving messages are
placed in a queue and retrieved at the convenience of the receiving application.

A proxy does not act on behalf of the remote object or need access to its class.
It is not a copy of the object, but a lightweight substitute for it. In a sense, it's
transparent; it simply passes the messages it receives on to the remote receiver
and manages the interprocess communication. Its main function is to provide a
local address for an object that would not otherwise have one.

A remote receiver is typically anonymous. Its class is hidden inside the remote
application. The sending application does not need to know how that
application is designed or what classes it uses. It does not need to use the same
classes itself. All it needs to know is what messages the remote object responds
to.

Because of this, an object that's designated to receive remote messages typically
advertises its interface in a formal protocol. Both the sending and the receiving
application declare the protocol-they both import the same protocol
declaration. The receiving application declares it because the remote object
must conform to the protocol. The sending application declares it to inform the
compiler about the messages it sends and because it may use the
conformsTo: method and the @protocol() directive to test the remote
receiver. The sending application does not have to implement any of the
methods in the protocol; it declares the protocol only because it initiates
messages to the remote receiver.

The distributed objects architecture, including the NSProxy and
NSConnection classes, is documented in OpenStep Programming Reference.

A
Proxy

for
B

B

9-18 OpenStep Development Tools—September 1996

9

Language Support

Remote messaging raises not only a number of intriguing possibilities for
program design, it also raises some interesting issues for the Objective C
language. Most of the issues are related to the efficiency of remote messaging
and the degree of separation that the two tasks should maintain while they're
communicating with each other.

So that programmers can give explicit instructions about the intent of a remote
message, Objective C defines five type qualifiers that can be used when
declaring methods inside a formal protocol:

oneway

in

out

inout

bycopy

These modifiers are restricted to formal protocols; they cannot be used inside
class and category declarations. However, if a class or category adopts a
protocol, its implementation of the protocol methods can use the same
modifiers that are used to declare the methods.

The following sections explain how these five modifiers are used.

Synchronous and Asynchronous Messages

Consider first a method with just a simple return value:

- (BOOL)canDance;

When a canDance message is sent to a receiver in the same application, the
method is invoked and the return value provided directly to the sender. But
when the receiver is in a remote application, two underlying messages are
required-one message to get the remote object to invoke the method, and the
other message to send back the result of the remote calculation. This is
illustrated in the figure below:

The Objective C Extensions 9-19

9

Figure 9-2 Round-Trip Message

Most remote messages will be, at bottom, two-way (or “round trip”) remote
procedure calls (RPCs) like this one. The sending application waits for the
receiving application to invoke the method, complete its processing, and send
back an indication that it has finished, along with any return information
requested. Waiting for the receiver to finish, even if no information is returned,
has the advantage of coordinating the two communicating applications, of
keeping them both “in sync.” For this reason, round-trip messages are often
called synchronous. Synchronous messages are the default.

However, it is not always necessary or a good idea to wait for a reply.
Sometimes it is sufficient simply to dispatch the remote message and return,
allowing the receiver to get to the task when it will. In the meantime, the
sender can go on to other things. Objective C provides a return type modifier,
oneway, to indicate that a method is used only for asynchronous messages:

- (oneway void)waltzAtWill;

Although oneway is a type qualifier (like const) and can be used in
combination with a specific type name, such as oneway float or oneway id, the
only such combination that makes any sense is oneway void. An asynchronous
message cannot have a valid return value.

Pointer Arguments

Next, consider methods that take pointer arguments. A pointer can be used to
pass information to the receiver by reference. When invoked, the method looks
at what is stored in the address it has passed.

- setTune:(struct tune *)aSong

{

 tune = *aSong;

 . . .

A
Proxy

for
B

B

initial message

return information

9-20 OpenStep Development Tools—September 1996

9

}

The same sort of argument can also be used to return information by reference.
The method uses the pointer to find where it should place information
requested in the message.

- getTune:(struct tune *)theSong

{

 . . .

 *theSong = tune;

}

The way the pointer is used makes a difference in how the remote message is
carried out. In neither case can the pointer simply be passed to the remote
object unchanged; it points to a memory location in the sender's address space
and would not be meaningful in the address space of the remote receiver. The
run-time system for remote messaging must make some adjustments behind
the scenes.

If the argument is used to pass information by reference, the run-time system
must dereference the pointer, ship the value it points to over to the remote
application, store the value in an address local to that application, and pass
that address to the remote receiver.

If, on the other hand, the pointer is used to return information by reference, the
value it points to does not have to be sent to the other application. Instead, a
value from the other application must be sent back and written into the
location indicated by the pointer.

In the one case, information is passed on the first leg of the round trip. In the
other case, information is returned on the second leg of the round trip. Because
these cases result in very different actions on the part of the run-time system
for remote messaging, Objective C provides type modifiers that can clarify the
programmer's intention:

• The type modifier in indicates that information is being passed in a
message:

- setTune:(in struct tune *)aSong;

• The modifier out indicates that an argument is being used to return
information by reference:

- getTune:(out struct tune *)theSong;

The Objective C Extensions 9-21

9

• A third modifier, inout, indicates that an argument is used both to provide
information and to get information back:

- adjustTune:(inout struct tune *)aSong;

The OpenStep distributed objects system takes inout to be the default modifier
for all pointer arguments except those declared const, for which in is the
default. inout is the safest assumption, but also the most time-consuming since
it requires passing information in both directions. The only modifier that
makes sense for arguments passed by value (nonpointers) is in. While in can be
used with any kind of argument, out and inout make sense only for pointers.

In C, pointers are sometimes used to represent composite values. For example,
a string is represented as a character pointer (char *). Although in notation and
implementation there is a level of indirection here, in concept there is not.
Conceptually, a string is an entity in and of itself, not a pointer to something
else.

In cases like this, the distributed objects system automatically dereferences the
pointer and passes whatever it points to as if by value. Therefore, the out and
inout modifiers make no sense with simple character pointers. It takes an
additional level of indirection in a remote message to pass or return a string by
reference:

- getTuneTitle:(out char **)theTitle;

The same is true of objects:

- adjustMatrix:(inout Matrix **)theMatrix;

These conventions are enforced at run time, not by the compiler.

Proxies and Copies

Finally, consider a method that takes an object as an argument:

- danceWith:aPartner;

A danceWith: message passes an object id to the receiver. If the sender and
receiver are in the same application, they would both be able to refer to the
same aPartner object.

This is true even if the receiver is in a remote application, except that the
receiver will need to refer to the object through a proxy (since the object is not
in its address space). The pointer that danceWith: delivers to a remote

9-22 OpenStep Development Tools—September 1996

9

receiver is actually a pointer to the proxy. Messages sent to the proxy would be
passed across the connection to the real object and any return information
would be passed back to the remote application.

There are times when proxies may be unnecessarily inefficient, when it's better
to send a copy of the object to the remote process so that it can interact with it
directly in its own address space. To give programmers a way to indicate that
this is intended, Objective C provides a bycopy type modifier:

- danceWith:(bycopy id)aClone;

bycopy can also be used for return values:

- (bycopy)dancer;

It can similarly be used with out to indicate that an object returned by
reference should be copied rather than delivered in the form of a proxy:

- getDancer:(bycopy out id *)theDancer;

The only type that it makes sense for bycopy to modify is an object, whether
dynamically typed id or statically typed by a class name.

When a copy of an object is passed to another application, it cannot be
anonymous. The application that receives the object must have the class of the
object loaded in its address space.

Static Options
Objective C objects are dynamic entities. As many decisions about them as
possible are pushed from compile time to run time:

The memory for objects is dynamically allocated at run time by class methods
that create new instances.

Objects are dynamically typed. In source code (at compile time), any object can
be of type id no matter what its class. The exact class of an id variable (and
therefore its particular methods and data structure) is not determined until the
program is running.

Messages and methods are dynamically bound, as described under “How
Messaging Works” on page 8-32 in the previous chapter. A run-time procedure
matches the method selector in the message to a method implementation that
“belongs to” the receiver.

The Objective C Extensions 9-23

9

These features give object-oriented programs a great deal of flexibility and
power, but there is a price to pay. Messages are somewhat slower than function
calls, for example, and the compiler cannot check the exact types (classes) of id
variables.

To permit better compile-time type checking, and to make code more self-
documenting, Objective C allows objects to be statically typed with a class
name rather than generically typed as id.

Static Typing

If a pointer to a class name is used in place of id in an object declaration,

NSMatrix *thisNSObject;

the compiler restricts the declared variable to be either an instance of the class
named in the declaration or an instance of a class that inherits from the named
class. In the example above, this NSObject can only be an NSMatrix of some
kind.

Statically typed objects have the same internal data structures as objects
declared to be ids. The type does not affect the object; it affects only the
amount of information given to the compiler about the object and the amount
of information available to those reading the source code.

Static typing also does not affect how the object is treated at run time. Statically
typed objects are dynamically allocated by the same class methods that create
instances of type id. If Mosaic is a subclass of NSMatrix , the following code
would still produce an object with all the instance variables of a Mosaic , not
just those of an NSMatrix :

NSMatrix *thisNSObject = [[Mosaic alloc] init];

Messages sent to statically typed objects are dynamically bound, just as objects
typed id are. The exact type of a statically typed receiver is still determined at
run time as part of the messaging process. A display message sent to
thisNSObject

[thisObject display];

will perform the version of the method defined in the Mosaic class, not its
NSMatrix superclass.

By giving the compiler more information about an object, static typing opens
up possibilities that are absent for objects typed id:

9-24 OpenStep Development Tools—September 1996

9

In certain situations, it allows for compile-time type checking.

It can free objects from the restriction that identically named methods must
have identical return and argument types.

It permits you to use the structure pointer operator to directly access an
object's instance variables.

The first two topics are discussed in the sections below. The third was covered
in the previous chapter under “Defining a Class” on page 8-21.

Type Checking

With the additional information provided by static typing, the compiler can
deliver better type-checking services in two situations:

• When a message is sent to a statically typed receiver, the compiler can check
to be sure that the receiver can respond. A warning is issued if the receiver
does not have access to the method named in the message.

• When a statically typed object is assigned to a statically typed variable, the
compiler can check to be sure that the types are compatible. A warning is
issued if they are not.

An assignment can be made without warning provided the class of the object
being assigned is identical to, or inherits from, the class of the variable
receiving the assignment. This is illustrated in the example below.

NSView *aNSView;

NSMatrix *aNSMatrix;

aNSMatrix = [[NSMatrix alloc] init];

aNSView = anNSMatrix;

Here an NSMatrix can be assigned to an NSView because an NSMatrix is a
kind of NSView—the NSMatrix class inherits from NSView. However, if the
roles of the two variables are reversed and an NSView is assigned to an
NSMatrix , the compiler will generate a warning; not every NSView is a
NSMatrix . (For reference, Figure 8-3 in the previous chapter shows a portion
of the class hierarchy including NSView and NSMatrix .)

The Objective C Extensions 9-25

9

There is no check when the expression on either side of the assignment
operator is an id. A statically typed object can be freely assigned to an id, or an
id to a statically typed object. Because methods like alloc and init return
ids, the compiler does not check to be sure that a compatible object is returned
to a statically typed variable. The following code is error-prone, but is allowed
nonetheless:

NSMatrix *anNSMatrix;

anNSMatrix = [[NSWindow alloc] init];

Note – This is consistent with the implementation of void * (pointer to void)
in ANSI C. Just as void * is a generic pointer that eliminates the need for
coercion in assignments between pointers, id is a generic pointer to objects
that eliminates the need for coercion to a particular class in assignments
between objects. For the purpose of type checking however, if a variable of
type id is protocol qualified—that is, id<myProtocol> myVar —the compiler
treats myVar as if it were statically typed, and issues warnings if a message
sent to myVar is not declared in myProtocol .

Return and Argument Types

In general, methods that share the same selector (the same name) must also
share the same return and argument types. This constraint is imposed by
dynamic binding. Because the class of a message receiver, and therefore class-
specific details about the method it's asked to perform, cannot be known at
compile time, the compiler must treat all methods with the same name alike.
When it prepares information on method return and argument types for the
run-time system, it creates just one method description for each method
selector.

However, when a message is sent to a statically typed object, the class of the
receiver is known by the compiler. The compiler has access to class-specific
information about the methods. Therefore, the message is freed from the
restrictions on its return and argument types.

Static Typing to an Inherited Class

An instance can be statically typed to its own class or to any class that it
inherits from. All instances, for example, can be statically typed as NSObjects .

9-26 OpenStep Development Tools—September 1996

9

However, the compiler understands the class of a statically typed object only
from the class name in the type designation, and it does its type checking
accordingly. Typing an instance to an inherited class can therefore result in
discrepancies between what the compiler thinks would happen at run time and
what will actually happen.

For example, if you statically type an NSMatrix instance as an NSView,

NSView *myNSMatrix = [[NSMatrix alloc] init];

the compiler will treat it as an NSView. If you send the object a message to
perform an NSMatrix method,

id cell = [myNSMatrix selectedCell];

the compiler will complain. The selectedCell method is defined in the
NSMatrix class, not in NSView.

However, if you send it a message to perform a method that the NSView class
knows about,

[myNSMatrix display];

the compiler will not complain, even though NSMatrix overrides the method.
At run time, NSMatrix 's version of the method will be performed.

Similarly, suppose that the Upper class declares a worry method that returns a
double,

- (double)worry;

and the Middle subclass of Upper overrides the method and declares a new
return type:

- (int)worry;

If an instance is statically typed to the Upper class, the compiler will think that
its worry method returns a double, and if an instance is typed to the Middle
class, it will think that worry returns an int. Errors will obviously result if a
Middle instance is typed to the Upper class. The compiler will inform the run-
time system that a worry message sent to the object will return a double, but at
run time it will actually return an int and generate an error.

Static typing can free identically named methods from the restriction that they
must have identical return and argument types, but it can do so reliably only if
the methods are declared in different branches of the class hierarchy.

The Objective C Extensions 9-27

9

Getting a Method Address

The only way to circumvent dynamic binding is to get the address of a method
and call it directly as if it were a function. This might be appropriate on the
rare occasions when a particular method will be performed many times in
succession and you want to avoid the overhead of messaging each time the
method is performed.

With a method defined in the NSObject class, methodForSelector :, you can
ask for a pointer to the procedure that implements a method, then use the
pointer to call the procedure. The pointer that methodForSelector: returns
must be carefully cast to the proper function type. Both return and argument
types should be included in the cast.

The example below shows how the procedure that implements the setTag:
method might be called:

id (*setter)(id, SEL, int);

int i;

setter = (id (*)(id, SEL, int))[target
methodForSelector:@selector(setTag:)];

for (i = 0; i < 1000, i++)

 setter(targetList[i], @selector(setTag:), i);

The first two arguments passed to the procedure are the receiving object (self)
and the method selector (_cmd). These arguments are hidden in method syntax
but must be made explicit when the method is called as a function.

Using methodForSelector: to circumvent dynamic binding saves most of
the time required by messaging. However, the savings will be significant only
where a particular message will be repeated many times, as in the for loop
shown above.

Note that methodForSelector: is provided by the run-time system; it is not
a feature of the Objective C language itself.

9-28 OpenStep Development Tools—September 1996

9

Getting an Object Data Structure

A fundamental tenet of object-oriented programming is that the data structure
of an object is private to the object. Information stored there can be accessed
only through messages sent to the object. However, there is a way to strip an
object data structure of its "objectness" and treat it like any other C structure.
This makes all the object's instance variables publicly available.

When given a class name as an argument, the @defs() directive produces the
declaration list for an instance of the class. This list is useful only in declaring
structures, so @defs() can appear only in the body of a structure declaration.
This code, for example, declares a structure that would be identical to the
template for an instance of the Worker class:

struct workerDef {

 @defs(Worker)

} *public;

Here public is declared as a pointer to a structure that is essentially
indistinguishable from a Worker instance. With a little help from a type cast, a
Worker id can be assigned to the pointer. The object's instance variables can
then be accessed publicly through the pointer:

id aWorker;

aWorker = [[Worker alloc] init];

public = (struct workerDef *)aWorker;

public->boss = nil;

This technique of turning an object into a structure makes all of its instance
variables public, no matter whether they were declared @private ,
@protected , or @public.

Objects generally are not designed with the expectation that they will be
turned into C structures. You may want to use @defs() for classes you define
entirely yourself, but it should not be applied to classes found in a library or to
classes you define that inherit from library classes.

The Objective C Extensions 9-29

9

Type *Encoding

To assist the run-time system, the compiler encodes the return and argument
types for each method in a character string and associates the string with the
method selector. The coding scheme it uses might also be of use in other
contexts and so is made publicly available with the @encode() directive.
When given a type specification, @encode() returns a string encoding that
type. The type can be a basic type such as an int, a pointer, a tagged structure
or union, or a class name-anything, in fact, that can be used as an argument to
the C sizeof() operator.

char *buf1 = @encode(int **);

char *buf2 = @encode(struct key);

char *buf3 = @encode(NSMatrix);

Table 9-1 lists the type codes. Note that many of them overlap with the codes
used in writing to a typed stream. However, there are codes listed here that
you cannot use when writing to a typed stream and there are codes that you
may want to use when writing to a typed stream that are not generated by
@encode() . (See OpenStep Srogramming Reference for information on typed
streams.)

Table 9-1 Type Codes

Code Meaning

c A char

i An int

s A short

l A long

C An unsigned char

I An unsigned int

S An unsigned short

L An unsigned long

f A float

d A double

v A void

9-30 OpenStep Development Tools—September 1996

9

The type specification for an array is enclosed within square brackets; the
number of elements in the array is specified immediately after the open
bracket, before the array type. For example, an array of 12 pointers to floats
would be encoded as:

[12^f]

Structures are specified within braces, and unions within parentheses. The
structure tag is listed first, followed by an equal sign and the codes for the
fields of the structure listed in sequence. For example, this structure,

typedef struct example {

 id anObject;

 char *aString;

 int anInt;

} Example;

would be encoded like this:

{example=@*i}

* A character string
(char *)

@ An object
(whether statically
typed or typed id)

A class object
(Class)

: A method selector
(SEL)

[...] An array

{...} A structure

(...) A union

bnum A bitfield of num
bits

^type A pointer to type

? An unknown type

Table 9-1 Type Codes

Code Meaning

The Objective C Extensions 9-31

9

The same encoding results whether the defined type name (Example) or the
structure tag (example) is passed to @encode() . The encoding for a structure
pointer carries the same amount of information about the structure's fields:

^{example=@*i}

However, another level of indirection removes the internal type specification:

^^{example}

Objects are treated like structures. For example, passing the NSObject class
name to @encode() yields this encoding:

{Object=#}

The NSObject class declares just one instance variable, isa, of type Class .

Although the @encode() directive does not return them, the run-time system
also uses these additional encodings for type qualifiers when they are used to
declare methods in a protocol:

Table 9-2 Additional Encodings

Code Meaning

r const

n in

N inout

o out

O bycopy

V oneway

9-32 OpenStep Development Tools—September 1996

9

A-1

Debugging an OpenStep
Application A

The SPARCworks Debugger is an interactive, window-based, source code and
machine-instruction level debugging tool. It provides dynamic analysis for
observing run-tme program behavior. The Debugger gives you complete control
of the dynamic execution of a program, including the collection of performance
data.

The Debugger provides the same functionality as dbx , the command-line
debugging tool, and you can enter dbx commands in the Command Pane of the
Debugger base window.

To debug an OpenStep application, click on the Debug button in the project
window for the application in Project Builder. If the project has not been built
yet, it is built first. If the project builds successfully, then the application is run in
debug mode and the SPARCworks Debugger starts up. See the SPARCworks
manual Debugging a Program for details on using the Debugger windows.

Note – If the project has already been built, you can Alt-click on the Debug button to
run the application under the Debugger.

Debugger Objective C Support
Release 3.1 of the SPARCworks Debugger includes support for Objective C
applications, such as those developed using OpenStep.

A-2 OpenStep Development Tools—September 1996

A

Dynamic Types

In Objective C an object pointer has two types:

• its static type, which is defined in the source code

• its dynamic type, which is known at run-time

The Debugger can provide information about the dynamic type of an object
when you use the print , display , inspect , and whatis commands with the
-d option, or when you have set the dbx customization variable
output_dynamic_type to on . If you use the +d option, the commands will
use the static type.

It is recommended that you put dbxenv output_dynamic_type on in your
~/.dbxrc file when debugging Objective C programs.

Finding Methods and Using Method Names in Non-expression Commands

The following are non-expression commands:

stop in

funcs

whatis

list

edit

Use the funcs command (with a regular expression) to find methods and
functions that the Debugger knows about and to print them in a format the
Debugger accepts. Use the dbx command help funcs for more information
on the funcs command.

If the process is active, the Debugger uses the run-time system to look up a
method, otherwise it uses static information (stabs).

Setting Breakpoints

The Debugger accepts the following variations of the stop command for setting
breakpoints in Objective C methods:

stop in -[Test ival:second:]

Debugging an OpenStep Application A-3

A

stop in +[Test alloc]

stop in [Test ival:second:]

stop in [obj ival:second:]// through an object (only if active
process)

stop in ``ival:second: // searches all classes for ival:second:

stop in ival:second: // only if dbxenv scope_look_aside is ̀ on'

stop inmethod ival:second:// stops in all methods with that name

If the process is not active, use the following syntax for category methods:

stop in -[Test(Cat1) catmethod:second:]

Calling Objective C Methods

All Objective C instance methods must be called through an object. The
following are some valid variations of calling Objective C methods:

call [obj ival: 30] // calling instance method with parameter

call [self ival: 30] // use self if stopped inside a class

call [Test alloc] // calling class method

Recovering from a Run-time System Crash

The Debugger calls the Objective C run-time system to look up methods and, if
output_dynamic_type is on, to find the dynamic type of an object. In some
cases this can cause a crash of the run-time system. The Debugger can usually
recover if you use the pop command. Use the where command and then the
pop command to unwind frames from the stack. You can also use the kill
command to return to a previous Debugger level.

Sample .dbxrc File
Your ~/.dbxrc file is read automatically if it exists when the Debugger starts
up. The following is a sample .dbxrc file for debugging Objective C
applications. This file is located in /usr/openstep/etc . To have the Debugger
read this file when it starts up, add source /usr/openstep/etc/.dbxrc to
your .dbxrc file.

A-4 OpenStep Development Tools—September 1996

A

##

Objective C settings

##

language objc

dbxenv scope_look_aside on // sets the dbx customization variable
scope_look_aside to on (find static
symbols even when not in scope)

dbxenv output_dynamic_type on // sets the dbx customization variable
output_dynamic_type to on (display,
inspect, print, whatis commands use
dynamic type of object)

do

call objc_enableMessageSendDebug(1)

to enable the tracing of messages in objc_msgSend. This tracing is

very fast and flexible. The above command will echo back all the

info you need to use this feature.

function objchelp

{

echo "Add 'source /usr/openstep/etc/.dbxrc' to your ~/.dbxrc
file"

echo " to define helpful Objective C functions, aliases and
buttons."

echo " Look at this file in an editor to see what it contains."

echo "For more help, enter:"

echo " help general dbx help"

echo " help ObjC more Objective C help"

echo " help FAQ dbx - gdb correspondences, and other
information"

}

function memon # stop if an object is freed too many times. VERY
SLOW!!

{

Debugging an OpenStep Application A-5

A

 call [NSAutoreleasePool enableDoubleReleaseCheck: 1]

 stop in _NSAutoreleaseInconsistency

 status

}

function memoff

{

 call [NSAutoreleasePool enableDoubleReleaseCheck: 0]

}

function defbrks # breakpoints that catch errors

{

 language objc

 stop in abort

 stop in -[NSObject doesNotRecognizeSelector:]

 stop in +[NSAssertionHandler currentHandler]

 stop in -[NSAssertionHandler
handleFailureInMethod:object:file:lineNumber:description:]

 stop in -[NSAssertionHandler
handleFailureInFunction:file:lineNumber:description:]

 stop in -[NSException raise]

 stop in DPSDefaultErrorProc

 stop in DPSCantHappen

 stop in _exit

}

function morebrks # other helpful places to breakpoint

{

 stop in NSLog

 stop in _XErrorHandler

 stop in -[Zombie forward::]

}

function allbrks # set breakpoints to catch errors

A-6 OpenStep Development Tools—September 1996

A

{

 defbrks

 morebrks

}

function pselfvar

{

 print self->${1}

}

function pdesc

{

 print [[$* description] cString]

}

function pnsstring

{

 print [$* cString]

}

function prstar

{

 print -r *($*)

}

function pcounts # print retain count and number of autoreleases of
$1

{

 print [$* retainCount]

 print [NSAutoreleasePool _numberOfObjectsIdenticalTo: $*]

}

print string of an NSText object

Debugging an OpenStep Application A-7

A

dalias ptext print [[!1 text] cString] // sets dbx alias ptext to
print string of an NSText object

print string of an NSCStringText object

dalias pcs print [[!1 cStringTextInternalState]->_string cString]
// sets dbx alias pcs to print string of

an NSCStringText object

dalias pns pnsstring // sets dbx alias pns for psstring command

dalias pd pdesc // sets dbx alias pd for pdesc command

dalias prs prstar // sets dbx alias prs for prstar command

alias typeof="print -l ((NSObject *)!:*)->isa->name" // sets dbx
alias typeof for printing type of
current object

dalias currwin "print -l [(NSView *)[NSView focusView] window]"
// sets dbx alias currwin for printing

current window

dalias flushcurrwin "print -l [((NSWindow *)[(NSView *)[NSView
focusView] window]) _forceFlushWindowToScreen]" // sets dbx alias

fluchcurrwin for synchronous flushing
of current window’s off-screen buffer
to screen

button expand whatis // adds whatis button command;if selected
characters begin with alphanumeric
character, $, or _, then expands
selection and uses as target

button expand prstar // adds prstar button command;if selected
characters begin with alphanumeric
character, $, or _, then expands
selection and uses as target

button expand pselfvar // adds pselfvar button command;if
selected characters begin with
alphanumeric character, $, or _, then
expands selection and uses as target

button expand pnsstring // adds pnsstring button command;if
selected characters begin with
alphanumeric character, $, or _, then

A-8 OpenStep Development Tools—September 1996

A

expands selection and uses as target
button expand pcounts // add pcounts button command;if selected

characters begin with alphanumeric
character, $, or _, then expands
selection and uses as target

button expand pdesc // add pcounts button command;if selected
characters begin with alphanumeric
character, $, or _, then expands
selection and uses as target

button ignore defbrks // adds defbrks button command; ignores
current mouse selection for command

##

General purpose settings

##

toolenv cmdlines 20 // sets the number of lines in the
command subwindow to 20

dbxenv step_events on // sets the dbx customization variable
step_events to on to allow breakpoints
while stepping or “nexting”

dbxenv suppress_startup_message 4.0 // sets the dbx customization
variable suppress_startup_message to

set -o ignoresuspend # uncomment to cause dbx to ignore ^Z

set -o emacs # uncomment to enable emacs-style command
editing

#set -o vi # or uncomment this line for vi-style editing

function attach # attach to a running process

{

 typeset PIG="$(/bin/ps -ef | /bin/egrep ${1} | /bin/egrep -v
egrep | /bin/head -1 | /bin/awk '{ print $8 " " $2 }')"

 debug $PIG

}

function collOn # enable collector modes

{

 collector work_set mode on

Debugging an OpenStep Application A-9

A

 collector profile mode stack

}

function ff

{

 where -f $(frame) 1

 list

}

function penviron # dump the environment variables of the target
process

{

 [-z "$1"] || { echo "$0: unexpected argument" >&2 && return; }

 typeset -i i=0

 typeset env="((char **)$[(char**)environ])"

 while :

 do

 x=$[($env)[$i]]

 echo "$i: " "${x#0x*\ }"

 case "$x" in

 \(nil\)) break;;

 esac

 ((i += 1))

 done

}

PS1="$SMSO(dbx !)$RMSO " # reverse-video prompt with history number

function _cb_prompt

{

 if $mtfeatures

 then # set prompt for MT debugging

 PS1='${SMSO}${thread} ${lwp}:!${RMSO} '

A-10 OpenStep Development Tools—September 1996

A

 else # set prompt for non-thread debugging

 PS1='${SMSO}dbx:!${RMSO} '

 fi

}

function hex # print arg in hex

{

 : ${1?"usage: $0 <expr> # print <expr> in hex"}

 typeset -i16 x

 ((x = $[(int)$*]))

 echo - $* = $x

}

typeset -q hex

function hexdump # dump $2 (default: sizeof $1) bytes in hex

{

 : ${1?"usage: $0 <exp> [<size>] # dump <size> bytes in hex"}

 typeset -i16 p="$[(void *)&$1]" # address of $1

 typeset -i s="${2:-$[sizeof ($1)]}" >/dev/null 2>&1 # number of
bytes

 builtin examine $p/$[(${s:-4}+3)/4]X

}

typeset -q hexdump

function pg # print process status by name

{

 /bin/ps -ef | /bin/egrep ${1} | /bin/egrep -v egrep

}

regs() # print register contents

{

 case $# in

 0) x &$g0/32X; x &$y/X; x &$psr/X; x &$pc/X; x &$npc/X ;;

 *) for i

Debugging an OpenStep Application A-11

A

 do reg=\$$i; x &$reg/X

 done ;;

 esac

}

dalias p print // sets dbx alias p for print command

dalias w where // sets dbx alias w for where command

dalias br where // sets dbx alias br for where command

dalias ww where -q // sets dbx alias ww for where -q (quick
traceback) command

dalias fr frame // sets dbx alias fr for frame command

dalias b stop in // sets dbx alias b for stop in command

dalias ba stop at // sets dbx alias ba for stop at command

dalias si stop in // sets dbx alias si for stop in command

dalias sa stop at // sets dbx alias sa for stop at command

dalias sic stop inclass // sets dbx alias sic for stop inclass
command

dalias sif stop infunction// sets dbx alias sif for stop
infunction command

dalias sim stop inmember // sets dbx alias sim for stop inmember
command

dalias sm stop modify // sets dbx alias sm for stop modify
command

dalias sr stop returns // sets dbx alias sr for stop returns
command

kalias cc="clear;cont" // sets Korn alias cc for clear command
followed by cont command

dalias cl clear // sets dbx alias cl for clear command

dalias ib status // sets dbx alias ib for status command

dalias st status // sets dbx alias st for status command

dalias d delete // sets dbx alias d for delete command

dalias r run // sets dbx alias r for run command

dalias c cont // sets dbx alias c for cont command

dalias s step // sets dbx alias s for step command

dalias su step up // sets dbx alias su for step up command

A-12 OpenStep Development Tools—September 1996

A

dalias n next // sets dbx alias n for next command

dalias di handler -disable// sets dbx alias di for handler
-disable command

dalias en handler -enable // sets dbx alias en for handler -enable
command

dalias N nexti // sets dbx alias N for nexti command

dalias S stepi // sets dbx alias S for stepi command

dalias q quit // sets dbx alias q for quit command

dalias tiny toolenv srclines 16; toolenv cmdlines 8// sets dbx alias
tiny to 16 lines in the source
subwindow and 8 lines in the command
subwindow

dalias mid toolenv srclines 25; toolenv cmdlines 25// sets dbx alias
mid to 25 lines in the source
subwindow and 25 lines in the command
subwindow

dalias big toolenv srclines 33; toolenv cmdlines 14// sets dbx alias
big to 33 lines in the source
subwindow and 14 lines in the command
subwindow

dalias und_all undisplay
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 // sets dbx

alias und_all to undo display commands
1 through 20

dalias insense dbxenv case insensitive // sets dbx alias insense to
make case insignificant in variable
and function names

dalias sense dbxenv case sensitive // sets dbx alias sense to make
case significant in variable and
function names

button lineno cont at // adds button command cont at; uses
line number associated with current
selection as target of command

button ignore step up // adds button command step up; ignores
current mouse selection for command

button ignore tiny // adds button command tiny; ignores
current mouse selection for command

button ignore mid // adds button command mid; ignores
current mouse selection for command

Debugging an OpenStep Application A-13

A

button ignore big // adds button command big; ignores
current mouse selection for command

button ignore quit // adds button command quit; ignores
current mouse selection for command

Helpful User Default Variables to Set with dwrite

The following user default variables, which you can set with the dwrite
command, may be useful in debugging your application:

NSEnableAutoreleasePool

NSEnableDoubleReleaseCheck

NSHideOnDeactivateEnabled

NSPauseAtStartup

NSSetPoolThreshold

NSShowAllViews

NSShowAllWindows

NSShowDrawTimes

NSShowEvents

NSShowPS

NSShowWindowInfo

NSShowXEvents

NSTrapIllegalFloatingPointOps

Tracing Objective C Objects
You can monitor Objective C messages being sent by objects in your application
by calling the function objc_messageSendDebug . This function allows you to
filter on different message attributes, and also stop at breakpoints when a certain
filter matches the current message.

This facility is particularly useful for finding memory allocation errors and
performance problems.

A-14 OpenStep Development Tools—September 1996

A

You can enable messageSendDebug in three ways:

• By using the NSUserDefaults system and dwrite commands (see
“Invoking messageSendDebug Using dwrite Commands”)

• From a Debugger command line or within a program, by calling the
functions found in /usr/openstep/include/objc/objc-debug.h (see
“Invoking messageSendDebug from a Program or the Debugger” on
page A-15)

• From a graphical tool which supports remote messageSend debugging,
such as the ObjectDebug tool included in OpenStep

 Invoking messageSendDebug Using dwrite Commands

You can automatically invoke messageSendDebug at execution time by using
one of the following dwrite commands.

This command turns on messageSendDebug , but no messages are sent until a
filter is set:

dwrite AppName NSEnableMessageSendDebug YES

This command suspends the display of messages, even if filters are set:

dwrite AppName NSEnableMessageSendDebug NO

This command turns on messageSendDebug , and adds a generic filter to show
all messages:

dwrite AppName NSEnableMessageSendDebug ALL

This command displays an explanation of how to use this facility:

dwrite AppName NSEnableMessageSendDebug HELP

Adding Individual Message Filters

You can add individual message filters with the following commands:

dwrite AppName NSMessageSendDebugFilter "ClassName | *,
[+ | -]selectorName | [+ | -]*, receiverID[hex or dec] | *, YES | NO

dwrite AppName NSMessageSendDebugFilter "GENERIC_FILTER"

dwrite AppName NSMessageSendDebugFilter1 "(AnotherSelectorName,
...)"

dwrite AppName NSMessageSendDebugFilterN "(SelectorNameN, ...)"

Debugging an OpenStep Application A-15

A

YES or NO applies to whether or not to call objc_messageMatchedFilter()
when a filter matches. Enter YES if you want your program to hit a breakpoint
when any filter matches (see “Setting a Breakpoint on a Filter Match” on
page A-17).

GENERIC_FILTER shows all messages.

If ClassName in the filter is *, any class counts as a match.

If selectorName in the filter is *, any selector counts as a match.

If selectorName in the filter is preceeded by a "+" or "-", only class methods, or
instance methods (respectively) are considered matches.

If receiverID in the filter is *, any receiver counts as a match.

If ClassName , selectorName , and receiverID are all *, all messages are
considered matches.

Controlling Call Level Indentation

By default, the call level (nested level) of each method is shown in the matched
filter output by indenting the line. At times this may be undesirable. To disable
or enable this feature, use one of the following commands to control (typically
turn off) call level indentation in all applications.

dwrite AppName NSEnableFilterCallLevelIndentation YES | NO

dwrite NSGlobalDomain NSEnableFilterCallLevelIndentation YES | NO

This setting effects console output only, and has no effect on external debug-
monitoring applications like ObjectDebug.

 Invoking messageSendDebug from a Program or the Debugger

For detailed information, see the file /usr/openstep/include/objc/objc-
debug.h . Enabling messageSendDebug adds to, and does not preclude,
filtering options you have set using dwrite .

Enabling messageSendDebug

To enable messageSendDebug , call one of the following methods:

objc_enableMessageSendDebug(EnableDebug)

A-16 OpenStep Development Tools—September 1996

A

objc_enableMessageSendDebug(EnableDebugShowAllMessages)

objc_enableMessageSendDebug(EnableDebugSilently)

objc_enableMessageSendDebug(DisableDebug)

objc_enableMessageSendDebug(DisableDebugSilently)

The following methods are equivalent to the above methods:

objc_enableMessageSendDebug(1)

objc_enableMessageSendDebug(2)

objc_enableMessageSendDebug(3)

objc_enableMessageSendDebug(0)

objc_enableMessageSendDebug(-1)

Note – You may want to disable this mechanism before making method calls in your
debugger, as those method calls will get traced as well!

Adding Filters

To add filters, you can call one of the following methods:

objc_addFilterFromString(const char *filterString)

objc_addFilterForClass(const char *className)

objc_addFilterForSelector(const char *selectorName)

objc_addFilterForReceiver(id receiver)

objc_addFilterFromString has the same syntax as the
NSMessageSendDebugFilter dwrite command, with the addition of a
FilterID field as the first value. This field lets you uniquely identify the filter.

The filter string format looks like this:

objc_addFilterFromString("FilterID, ClassName | *,
[+ | -]selectorName | [+ | -]*, receiverID[hex or dec] | *, YES | NO

or this:

objc_addFilterFromString("GENERIC_FILTER")

YES or NO applies to whether or not to call objc_messageMatchedFilter()
when a filter matches. Enter YES if you want your program to hit a breakpoint
when any filter matches (see “Setting a Breakpoint on a Filter Match” on
page A-17).

Debugging an OpenStep Application A-17

A

GENERIC_FILTER shows all messages.

If ClassName in the filter is *, any class counts as a match.

If selectorName in the filter is *, any selector counts as a match.

If selectorName in the filter is preceeded by a "+" or "-", only class methods, or
instance methods (respectively) are considered matches.

If receiverID in the filter is *, any receiver counts as a match.

If ClassName , selectorName , and receiverID are all *, all messages are
considered matches.

Controlling Call Level Indentation

By default, the call level (nested level) of each method is shown in the matched
filter output by indenting the line. At times this may be undesirable. To disable
or enable this feature, call the following method:

objc_enableFilterCallLevelIndentation(0 | 1)

This setting effects console output only, and has no effect on external debug-
monitoring applications. It is unnecessary if the feature has already been enabled
or disabled with dwrite.

Removing Filters

To remove all filters, call the following method:

objc_removeAllFilters()

Disabling Filters

To temporarily disable all filters, call the following method:

objc_enableMessageSendDebug(DisableDebug[0])

Setting a Breakpoint on a Filter Match

If you want your program to hit a breakpoint when any filter matches, call the
following method:

objc_callMessageMatchedFilter(0 | 1)

A-18 OpenStep Development Tools—September 1996

A

Note – objc_callMessageMatchedFilter sets this flag for all existing filters.
To set the flag for individual filters, use theobjc_addFilterFromString method
to create your filter, or callobjc_callMessageMatchedFilter after setting
some filters, and then set the rest of your filters.

Once you continue program execution, a string is printed indicating that the
current message or receiver matched one of the set filters.

After this string is printed, the function objc_messageMatchedFilter() is
called by the Objective C runtime system.

You can put a breakpoint at objc_messageMatchedFilter() to get a
backtrace.

 Examples

Example 1:

To see all the messages sent to the NSAutoreleasePool class, either enter the
following dbx commands in the Debugger Command Pane:

call objc_enableMessageSendDebug(1)

call objc_addFilterForClass("NSAutoreleasePool")

or use the following dwrite commands at execution time:

dwrite AppName NSEnableMessageSendDebug YES

dwrite AppName NSMessageSendDebugFilter "NSAutoreleasePool,*,*,NO"

Example 2:

To see all the addObject: messages sent to the NSAutoreleasePool class,
and have Objective C call objc_messageMatchedFilter() when that
message is sent (so you can hit a breakpoint there), either enter the following
dbx commands in the Debugger Command Pane:

call objc_enableMessageSendDebug(1)

call
objc_addFilterFromString("1,NSAutoreleasePool,addObject:,*,YES")

or use the following dwrite commands at execution time

Debugging an OpenStep Application A-19

A

dwrite AppName NSEnableMessageSendDebug YES

dwrite AppName NSMessageSendDebugFilter1
"NSAutoreleasePool,addObject:,*,YES"

Notice the lack of the first parameter, the filterID , which is automatically
generated in this case by the number that is appended to the dwrite key + 1000
(for example. "1001").

Example 3:

To see all the class method calls (as opposed to instance method calls) sent to any
object, and not show call level indentation, either enter the following dbx
commands in the Debugger Command Pane:

call objc_enableMessageSendDebug(1)

call objc_addFilterForSelector("+*")

call objc_enableFilterCallLevelIndentation(0)

or use the following dwrite commands at execution time:

dwrite AppName NSEnableMessageSendDebug YES

dwrite AppName NSMessageSendDebugFilter "*,+*,*,NO"

dwrite AppName NSEnableFilterCallLevelIndentation NO

Implementing Your Own Filtering Mechanism

If you want to implement your own filtering mechanism, you can call the
following function:

objc_setMessageSendFilterFunction(void
(*customFilterFunction)(Class receiverClass,id receiver, SEL
selector,void *callLevel, void *threadID))

This function takes a pointer to a filterFunction . After calling this function,
every message (objc_msgSend) that is sent will go through your own filter
function. You can then implement your own filtering system.

You can also call the following function from your filter function, in case you
want to do the normal filtering stuff but tweak a few things first.:

objc_defaultMessageSendFilterFunction()

You can get a linked list of all the currently set filters by calling the following:

objc_filterList(void)

A-20 OpenStep Development Tools—September 1996

A

Debugging Applications Using Optimized Libraries
If you compile an application with -g but use libraries not compiled with -g, the
Debugger does not know the prototypes of methods defined in the libraries. This
means it does not know the types of the returned values, nor of the parameters.
It assumes the types are int .

For example, assume that set1 is an NSSet , You could use casts to tell the
Debugger the return types of methods:

dbx:3 whatis set1

@interface NSSet *set1;

dbx:4 p [set1 description]

[set1 description] = -283014864

dbx:5 p (NSString *)[set1 description]

(@interface NSString *) [set1 description] = 0xef218bd0

dbx:6 p [(NSString *)[set1 description] cString]

[(@interface NSString *) [set1 description] cString] = -281204711

dbx:7 p (char *)[(NSString *)[set1 description] cString]

(char *) [(@interface NSString *) [set1 description] cString] =
0xef3d2841 "NSConcreteSet(a, b)"

In order to obviate the need for these casts, Project Builder includes a special
module named dbxInfo.o . This module contains debugging information for
all the methods defined in the Application Kit and Foundation Kit libraries.
When you do a debug build using the Project Builder Makefiles, this module is
automatically linked into your application. In order to make this information
available to the Debugger after it has started, Project Builder issues the following
command to the Debugger as it is starting up:

module dbxInfo.o

This command causes the Debugger to read in the debugging information
contained in dbxInfo.o so it is available when the Debugger has to determine
the return types and parameter types of methods invocations.

B-1

Interface Builder Application
Programming Interface B

This appendix describes the application programming interface (API) that lets
you build custom palettes, inspectors, and editors for Interface Builder.

Interface Builder gives you direct access to the majority of the objects defined in
OpenStep. For example, you can easily add an NSText object to your
application—an object that represents years of programming and testing
effort—by dragging the object from Interface Builder’s Palette window into your
application’s window. By creating a custom palette containing objects of your
own design, you and other developers can manipulate these objects as easily as
you do the ones in Interface Builder’s standard palettes.

Using the facilities described in this appendix, you can easily create a palette that
contains one or more objects of your own design. These objects can be of various
types:

The API described here also lets you provide inspectors for any custom object.
There are four kinds of inspectors: Attributes, Connections, Size, and Help. The
most common inspector to implement is the Attributes inspector, which lets the
user set the custom object’s unique features. For example, if you define a custom

Type Instantiation

NSView objects Can be dragged into one of the application’s standard windows.

NSMenuCell objects Can be dragged into one of the application’s menus.

NSWindow objects Can be dragged into the workspace.

Other non-NSView objects Can be dragged into Interface Builder’s File window.

B-2 OpenStep Development Tools—September 1996

B

button object that sends a message repeatedly when it is pressed, the Attributes
inspector could let the user set the repeat rate. Objects with special connection
requirements can provide their own Connection inspectors. The Size and Help
inspectors are rarely overridden since they are appropriate for most types of
objects.

If you need to provide the user with a more sophisticated system for interacting
with your custom objects, you can implement an editor using the API described
in this appendix. Whereas an inspector borrows Interface Builder’s Inspector
panel for its display, an editor provides its own window. The size of this
window is not constrained as is the inspector window. Since each object can
have its own editor, there can be multiple editor windows on the screen at once,
making “copy and paste” and “drag and drop” interactions possible between
editor windows. If the edited object contains other objects, the editor can open
subeditors to let the user interact with the contained objects.

To provide a better context for the discussion of the programming interface that
makes custom palettes, inspectors, and editors possible, the next section gives a
broad overview of Interface Builder’s design.

Interface Builder’s Design
You use Interface Builder to assemble and interconnect your application’s
objects. You start the process by creating a new document (or, more likely, by
modifying the default document provided by Project Builder). When you save
the document, it is represented by a file package having a name ending in .nib .

An Interface Builder document contains the following:

• An object hierarchy

• References to custom classes

• Connection information

• Resources such as sounds and images

Within Interface Builder, these components are managed by a document object.
This object is of a private class, but can be queried and updated through the
methods declared in the IBDocuments protocol.

Interface Builder Application Programming Interface B-3

B

The Object Hierarchy
A document object stores and maintains an object hierarchy. At the top of the
hierarchy is the File’s owner object—the object that is represented in the top-left
portion of the File window. This is actually a proxy object, since the actual object
that owns the interface exists outside of the nib file. When a user adds an object
to the interface project, it becomes part of the document by being attached to
some other object—the parent object—in the object hierarchy. (In this hierarchy, a
parent object may have many children, but each child can have only one parent
object.) An object must be part of this hierarchy for it to be archived in the nib
file.

Interface Builder declares and implements several methods as a category of
NSObject (see “NSObject Additions” on page C-11) so that it can query any
object in the hierarchy for crucial information. For example, each object can
identify its various inspectors since it inherits the following methods:

• connectInspectorClassName

• sizeInspectorClassName

• helpInspectorClassName

• inspectorClassName

When you define a class for a custom palette object, you can override any of
these methods to provide your own inspectors.

Class References
Often, the object you want instantiated when your application runs is not
available to Interface Builder either from its own library of objects or from any
palette that has been dynamically loaded. For these cases, Interface Builder
provides a proxy object such as the NSCustomView object in the Basic Views
palette. When you drag an NSCustomView into your application, you are in fact
adding this proxy object to the document’s object hierarchy. When the resulting
nib file is loaded within a running application, the proxy object is unarchived
and queried to determine the identity of the class that the proxy represents.
Then, an instance of this custom class is created (through the facilities of the
alloc and init messages), and the proxy is freed.

B-4 OpenStep Development Tools—September 1996

B

Note that this distinction between objects that are unarchived and objects that
are represented by proxies has important consequences. An object that is
unarchived can receive awakeAfterUsingCoder: message, but does not
receive an init message. On the other hand, an object that is represented by a
proxy object in the nib file receives only an init message—it does not receive
an awakeAfterUsingCoder: message.

Connection Information
An Interface Builder document also contains information about how objects
within the object hierarchy are interconnected. This connection information is
embodied in objects that conform to the IBConnectors protocol. Each
connector object stores information about a connection between one source
object and one destination object. Interface Builder’s Connections inspector is
the interface to a document’s connector objects. Each time you connect a source
object with a destination object, you are creating another connection object.

When you save the document, connector objects are archived in the nib file along
with the objects they interconnect. When an application loads the nib file, the
objects from the object hierarchy are unarchived, proxy objects are replaced with
the appropriate instances, and connection objects are unarchived. The
application then sends each connection object an establishConnection
message, giving it an opportunity to connect its source and destination as it
deems appropriate. The standard connection object that Interface Builder
provides (again, of an unspecified class) stores the identity of the source object’s
outlet variable and the destination object’s action method, if any. So, when such
a connector object receives an establishConnection message, it sets the
source object’s outlet to the destination object and—if the source object’s outlet is
named “target”—it sets the source’s action to the destination’s action method.

In most cases, Interface Builder’s standard connection objects will be sufficient
for your needs. However, you can create a Connection inspector and connection
objects of your own, and through the methods declared in the IBDocuments
protocol, you can have these connection objects archived in the nib file.

Interface Builder Application Programming Interface B-5

B

Interface Builder’s Programming Interface
The API that Interface Builder defines is organized as two class definitions,
several protocols, and several methods that are added, through the use of
categories, to the definitions of the NSObject and NSView classes. The
functions of these components are summarized in the following sections.

Classes

Interface Builder uses the class definitions for IBPalette and IBInspector as
links to your custom palettes and inspectors. It is through the methods defined
in these classes that Interface Builder locates and loads the user-interface objects
that appear in the custom palette and in the inspector for a custom object. These
classes are described in detail in Appendix C, “Interface Builder API Classes.”

Class Description

IBPalette This class is provided as the owner of palette’s interface. You
must create a subclass of IBPalette to associate the images in
the Palette window with the real objects you intend to have
instantiated.

IBInspector This is the abstract superclass for inspectors. Your inspector
provides Interface Builder with the controls to be loaded into
the Inspector panel when the user attempts to inspect the
custom object. The inspector also interprets the user’s actions
on these controls as commands to modify the custom object’s
state.

B-6 OpenStep Development Tools—September 1996

B

Protocols

The protocols listed below define the ways your dynamically loaded palettes
and inspectors can communicate with Interface Builder (the IB and
IBDocuments protocols) and the ways Interface Builder can communicate with
objects in your module (the remaining protocols). These protocols are described
in detail in Appendix D, “Interface Builder API Protocols.”

Other Programming Interfaces

Through the use of categories, Interface Builder adds methods to the NSObject
and NSView classes. These methods are described in “NSObject Additions” on
page C-11 and “NSView Additions” on page C-15.

Protocol Description

IB This protocol gives you access to global information: the
object that represents the active document, whether
Interface Builder is in test mode, the source and destination
objects of a connection, and so on.

IBDocuments This protocol defines the programming interface to a
document object in Interface Builder. Through this
interface, you can add and remove objects from the
document’s object hierarchy, add or remove a connector
object, and set the active editor.

IBEditors This protocol declares the methods through which Interface
Builder can interact with an editor object. Interface Builder
invokes these methods to make the editor’s selected object
visible; to copy, paste, or delete the selection; and to open
and close subeditors, among other things.

IBSelectionOwners Editor objects conform to this protocol, which declares
methods for counting the number of objects in the selection
and for filling an NSArray object with the objects in the
selection.

IBConnectors This protocol declares the methods that connector objects
must implement. These include methods for identifying the
source and destination of a connection and for establishing
the connection between these objects.

Interface Builder Application Programming Interface B-7

B

Class Description

NSObject Additions Interface Builder uses these methods to discover the various
inspectors for the selected object. Default inspectors and
editors are provided for all objects.

NSView Additions These methods let custom NSView objects control how they
are resized and redrawn.

NSCell Additions These methods let custom NSCell objects control how they
are resized and redrawn.

B-8 OpenStep Development Tools—September 1996

B

C-1

Interface Builder API Classes C

IBInspector

Class Description

The IBInspector class defines the interface between an inspector for a
loadable module and the Interface Builder application. When you build a new
inspector for Interface Builder, you create a subclass of IBInspector .

The inspector you define must load its interface (that is, the nib file containing
the interface), and it must override the ok: , revert: , and wantsButtons
methods. The nib file is generally loaded as part of the inspector’s init
method. The wantsButtons method controls whether the inspector displays
OK and Revert button. (As with Interface Builder’s standard inspectors, most
custom inspectors do not need these buttons—instead, the user’s actions in the
Inspector panel are registered immediately by the inspected object.) The ok:
and revert: methods control the synchronization of the Inspector panel’s state
with that of the inspected object. Interface Builder sends the inspector a

Characteristic Description

Inherits From: NSObject

Declared In: include/InterfaceBuilder/IBInspector.h

C-2 OpenStep Development Tools—September 1996

C

revert: message to make the inspector reflect the current state of the inspected
object. The ok: message should cause the inspector to set the state of the
inspected object to that displayed in the Inspector panel.

An inspector should send itself a touch: message when the user begins
modifying the data it displays. This message displays a broken “X” in the
panel’s close box and enables the inspector’s OK and Revert buttons, if present.
(See “textDidBeginEditing:” on page C-5 for alternate way to achieve this result.)

Instance Variables
id object;

NSWindow* window;

id manager;

NSButton* okButton;

NSButton* revertButton;

Variable Description

object The object that is being inspected

window The Panel that contains the inspector’s user interface

manager private

okButton The Inspector panel’s OK button, if present

revertButton The Inspector panel’s Revert button, if present

Interface Builder API Classes C-3

C

Method Types

Instance Methods

object

– (id)object

Returns the object that is being inspected.

ok:

– (void)ok:(id)sender

Implement in your subclass of IBInspector to commit the changes that the
user makes in the Inspector panel. The OK button in the Inspector panel—if
present—sends an ok: message when the user clicks on it.

Your implementation of this method must send the same message to super as
follows:

(void)ok:(id)sender

{

 /* your code to commit changes */

 [super (ok:sender];

 return self;

}

Activity Class Methods

Accessing objects – object
– okButton
– revertButton
– textDidBeginEditing
– wantsButtons
– window

Managing changes – ok:
– revert
– textDidBeginEditing
– touch

C-4 OpenStep Development Tools—September 1996

C

The message to super replaces the broken “X” in the panel’s close box with the
standard “X”, indicating that the changes have been committed. See also
– revert:, – touch: .

okButton:

– (NSButton *)okButton

Returns the Inspector’s OK button object. This can be useful if you want to alter
its title, for example. See also – revertButton .

revert:

– (void)revert:(id)sender

Implement in your subclass of IBInspector to synchronize the inspector’s
display with the state of the object being inspected. Interface Builder sends this
message to the inspector object whenever the inspector’s display might need to
be updated, for example, when the user opens the Inspector panel and the
selected object in Interface Builder is of the type associated with this inspector.
The Revert button in the Inspector panel—if present—also sends a revert:
message when the user clicks on it.

Your subclass must implement this method, and it must send the same message
to super as part of its implementation, as follows:

revert:sender

{

 /* your code to inspect selected object */

 [super revert:sender];

 return self;

}

This message to super replaces the broken “X” in the panel’s close box with the
standard “X”, indicating that the changes have been discarded. See also – ok:,
– touch .

Interface Builder API Classes C-5

C

revertButton:

– (NSButton *)revertButton

Returns the Inspector’s Revert button object. This can be useful if you want to
alter its title, for example. See also – okButton.

textDidBeginEditing:

– textDidBeginEditing:sender

Sends the IBInspector a touch: message on behalf of some NSText object in
the Inspector panel.

By making your inspector object the delegate of any NSText object in the
Inspector panel, the panel will be updated appropriately as the user alters the
panel’s contents. See also – touch:.

touch :
– (void)touch:(id)sender

Changes the image in the Inspector panel’s close box to a broken “X” to indicate
that the contents have been edited. Also, enables the buttons that allow the user
to commit or abandon changes. See also – textDidBeginEditing:.

wantsButtons

– (BOOL)wantsButtons

Returns a boolean value indicating whether the inspector object requires
Interface Builder to display the OK and Revert buttons in the Inspector panel.

window

– (NSWindow *)window

Returns the NSWindow object that contains the user interface for the inspector.

C-6 OpenStep Development Tools—September 1996

C

IBPalette

Class Description

The IBPalette class defines Interface Builder’s link to a dynamically loaded
palette. Interface Builder uses the facilities of this class to load a custom palette’s
interface and executable code.

Each loadable palette must contain a subclass of IBPalette , and this class must
be identified in the palette’s palette.table file. Interface Builder creates an
instance of this subclass when it loads the palette. In its init method, the
subclass must load the nib file containing the classes of objects on the palette.
Interface Builder then sends the palette object an originalWindow message to
access the window that contains the views to be displayed in the Palette
window.

If a palette contains non-NSView objects (NSMenuCells , NSWindows, or objects
that will be deposited in the nib file window), the subclass must implement the
finishInstantiate method to associate each NSView object that is displayed
in the Palette window with the non-NSView object that should be created when
the user instantiates the object by dragging it from the palette.

For example, consider a custom palette that provides an AddressBook object
that manages people’s names and addresses. This object, a subclass of
NSObject , is to be dragged into the nib file window. Further, imagine that the
subclass of IBPalette for this custom palette, AddressBookPalette , has two
outlets: addressBookObject and addressBookView . When the palette’s nib
file was created, the outlets were connected to the AddressBook object and to
an NSView object that will represent it in the Palette window. Within the
AddressBookPalette class implementation file, the finishInstantiate
method would look like this:

- (void)finishInstantiate
{
 [self associateObject:addressBookObject

Characteristic Description

Inherits From: NSObject

Declared In: include/InterfaceBuilder/IBPalette.h

Interface Builder API Classes C-7

C

 type:IBObjectPboardType with:addressBookView];
 return self;
}

Notice that the subclass establishes an association by sending itself an
associateObject:ofType:withView: message. IBPalette implements
this method. The second argument is a type string defined in IBPalette.h
that controls where the palette image may be deposited:

Instance Variables
id <IBDocuments> _paletteDocument;

NSWindow *_originalWindow;

IBPaletteView *_paletteView;

NSView *_draggedView;

id _paletteBundle;

Type Usage

IBObjectPboardType For objects that the user must deposit in the File window

IBMenuCellPboardType For NSMenuCells without submenus; must be deposited
in a menu

IBMenuPboardType For NSMenuCells that have submenus; must be
deposited in a menu

IBWindowPboardType For NSWindows and NSPanels; must be deposited in the
workspace

Variable Description

paletteDocument An object conforming to the IBDocuments protocol that represents
the dynamically loaded palette

originalWindow The window containing the interface objects that will be loaded into
Interface Builder’s Palettes window

paletteView private

draggedView private

paletteBundle private

C-8 OpenStep Development Tools—September 1996

C

Method Types

Instance Methods

associateObject:ofType:withView:

– (void)associateObject:(id)object ofType:(NSString *)type
withView:(NSView *)view

Establishes an association between an NSView in a palette (view) and the object
that should be instantiated when the user drags the NSView from the palette
(object). The type argument controls where the palette object may be
deposited. (See “Class Description” on page C-6 for more information.)

If your custom palette provides non-NSView objects, override IBPalette ’s
finishInstantiate method with an implementation that sends
associateObject:ofType:withView: messages to associate each NSView
object in the palette with the non-NSView object that it represents.

imageNamed:
– (NSImage *)imageNamed:(NSString *)name

Returns the NSImage instance associated with name. If no such image can be
found, this method returns nil .

Use this method to refer to images in your custom palette. This method first
tries to find the image by invoking NSImage’s version of findImageNamed :. If
that is unsuccessful, it uses the facilities of the NSBundle class to check the
.palette directory for this resource. See getPath:forResource:ofType:
for a description of NSBundle ’s search path. See also
– pathForResource:ofType: (NSBundle common class).

Activity Class Methods

Associating NSViews and NSObjects – associateObject:ofType:withView:

Initializing the palette – finishInstantiate

Accessing related objects – paletteDocument
– originalWindow
– imageNamed:

Interface Builder API Classes C-9

C

finishInstantiate

– (void)finishInstantiate

Implement to complete the initialization of your IBPalette object. Interface
Builder sends a finishInstantiate message to the IBPalette object after it
has been unarchived from the palette file. A typical use of this method is to
associate an NSView object within the custom palette with a non-NSView object
that is meant to represent it in the Palette window. See “Class Description” on
page C-6 for more information. See also – associateObject:type:with:.

originalWindow

– (NSWindow *)originalWindow

Returns the NSWindow that contains the NSView objects to be loaded into
Interface Builder’s Palette window. When it loads a custom palette, Interface
Builder sends the IBPalette subclass an originalWindow message. In your
custom palette, you must connect the originalWindow outlet of your subclass
of IBPalette to the NSWindow that contains the NSViews that represent your
palette objects.

paletteDocument

– (id<IBDocuments>)paletteDocument

Returns an object that represents the dynamically loaded palette. This object is
of unspecified class; however, it conforms to the IBDocuments protocol.

NSApplication Additions

Category Description

Interface Builder adds these methods to the definition of the NSApplication
class for managing connections. They may be useful when implementing your
own Connections inspector.

Characteristic Description

Category Of: NSApplication

Declared In: include/InterfaceBuilder/IBConnectors.h

C-10 OpenStep Development Tools—September 1996

C

Instance Methods

connectDestination

- (id)connectDestination

Returns the object that is the destination of the connection; that is, the object to
which the user has dragged a connection line. See also – connectSource .

connectSource

- (id)connectSource

Returns the object that is the source of the connection; that is, the object from
which the user has dragged a connection line. See also
– connectDestination .

displayConnectionBetween:and:

- (void)displayConnectionBetween:(id)source and:(id)destination

Causes Interface Builder to draw connection lines between source and
destination. For example, when the user clicks on an entry in the Connections list
in the Connections inspector, Interface Builder uses this method to display the
corresponding connection.

The act of displaying a connection between these two objects does not require
that a connection really exist, and does not create a connection. It is the
Connection inspector’s responsibility to establish the programmatic connection.
This method simply draws lines between two objects and attempts to make both
objects visible. See also – stopConnecting .

isConnecting

- (BOOL)isConnecting

Returns YES if connection lines are being displayed in Interface Builder. You can
use this information to control how your object is drawn during the connection
process. For example, when you drag a connection line from a button, the
button’s black border and text are redrawn in gray. See also
– stopConnecting .

Interface Builder API Classes C-11

C

stopConnecting

- (void)stopConnecting;

Causes Interface Builder to remove any connection lines from the screen.
Interface Builder uses this method to remove connection lines when the user
drags a window. See also – isConnecting.

NSObject Additions

Category Description

Interface Builder adds these methods to the definition of the NSObject class so
that any palette object can be queried for its inspectors, for its editor, and for an
image to represent the object when it is instantiated in the File window.

The methods described in “Instance Methods” on page C-12 return the class
name for the object that will own the Inspector panel’s display. Interface Builder
caches this information so that when the user attempts to inspect an object,
Interface Builder knows what type of inspector to instantiate (if it has not yet
been instantiated). The inspector object provides the interface that Interface
Builder displays in the Inspector panel.

Interface Builder supplies default implementations of these methods; you only
override them if your custom palette object requires it. For example, if you
create an NSTextField palette object that validates its input, you would
probably provide an Attributes inspector that lets the user specify the acceptable
input values. Thus, you would override the inspectorClassName method to
return the class name for the Attributes inspector object. However, you would
probably not have to override the other inspector methods since the standard
inspectors would be satisfactory.

By default, these methods return the empty string ““, except for
imageforViewer , which returns nil .

Characteristic Description

Category Of: NSObject

Declared In: include/InterfaceBuilder/IBDocuments.h
include/InterfaceBuilder/IBEditors.h
include/InterfaceBuilder/IBInspector.h
include/ InterfaceBuilder/IBObjectAdditions.h

C-12 OpenStep Development Tools—September 1996

C

Override the editorClassName method to return the class name of the editor
to use for this object. The editor is invoked when the user double-clicks on the
object. NSView objects inherit Interface Builder’s standard NSView editor.

You only need to override the imageForViewer method if you want a special
image to represent your custom palette object when it is dragged into the nib file
window. If you do not supply such an image, Interface Builder uses the standard
cube image.

Instance Methods

awakeFromDocument :
– (void)awakeFromDocument:(id<IBDocuments>)document

Allows special behavior after the nib document has been loaded.

canSubstituteFor Class:

+ (BOOL)canSubstituteForClass:(Class)originalObjectClass

Implement to have custom class not be displayed in the inspector of its
superclass. Returns YES if self is a valid replacement class for
originalObjectClass ; NO otherwise.

connectInspectorClassName

– (NSString *)connectInspectorClassName

Returns the class name of the receiver’s Connection inspector. Interface Builder
uses this information to instantiate the Inspector object for the currently selected
object. You should rarely need to override the standard Connection inspector.

editorClassName

– (NSString *)editorClassName

Returns the class name of the receiver’s editor. Interface Builder uses this
information to instantiate the editor object for the currently selected object.

Interface Builder API Classes C-13

C

helpInspectorClassName

– (NSString *)helpInspectorClassName

Returns the class name of the receiver’s Help inspector. Interface Builder uses
this information to instantiate the help inspector object for the currently selected
object. You should rarely need to override the standard Help inspector.

imageForViewer:

– (NSImage *)imageForViewer

Returns the image that is displayed in the File window when an instance of this
class is created. By default, Interface Builder provides an image of a cube. If you
want to provide a different image, implement this method in your custom class.

inspectorClassName

– (NSString *)inspectorClassName

Returns the class name of the receiver’s Attributes inspector. Interface Builder
uses this information to instantiate the attributes inspector object for the
currently selected object.

sizeInspectorClassName

– (NSString *)sizeInspectorClassName

Returns the class name of the receiver’s size inspector. Interface Builder uses
this information to instantiate the size inspector object for the currently selected
object.

C-14 OpenStep Development Tools—September 1996

C

NSCellAdditions

Category Description

Interface Builder adds three methods to the definition of the NSCell class so
that an NSCell that is dragged from the Palette window can control its size and
make other adjustments as a consequence of resizing.

Instance Methods

cellWillAltDragWithSize:

– (void)cellWillAltDragWithSize:(NSSize)cellSize

Allows the cell to set up the necessary state before Alt-dragging.

maximumSizeForCellSize:

– (NSSize)maximumSizeForCellSize:(NSSize)cellSize
knobPosition:(IBKnobPosition)knobPosition

Implement this method to control the maximum dimensions of your NSCell .

The knobPosition argument specifies which control point the user is dragging
to resize the object. It can have these values:

IBBottomLeftKnobPosition
IBMiddleLeftKnobPosition
IBTopLeftKnobPosition
IBMiddleTopKnobPosition
IBTopRightKnobPosition
IBMiddleRightKnobPosition
IBBottomRightKnobPosition
IBMiddleBottonKnobPosition

Characteristic Description

Category Of: NSCell

Declared In: include/InterfaceBuilder/IBViewAdditions.h

Interface Builder API Classes C-15

C

You can use the knobPosition argument to determine how the NSCell will
resize.

minimumSizeForCellSize:

– (NSSize)minimumSizeForCellSize:(NSSize)cellSize
knobPosition:(IBKnobPosition)knobPosition

Implement this method to control the minimum dimensions of your NSCell .

The knobPosition argument specifies which control point the user is dragging
to resize the object. It can have these values:

IBBottomLeftKnobPosition
IBMiddleLeftKnobPosition
IBTopLeftKnobPosition
IBMiddleTopKnobPosition
IBTopRightKnobPosition
IBMiddleRightKnobPosition
IBBottomRightKnobPosition
IBMiddleBottonKnobPosition

You can use the knobPosition argument to determine how the NSCell will
resize.

NSView Additions

Category Description

Interface Builder adds four methods to the definition of the NSView class so that
an NSView that is dragged from the Palette window can control its size and
make other adjustments as a consequence of resizing. As the user begins to drag
one of the NSView’s control points, Interface Builder sends it a
maximumSizeFromKnobPosition: or minimumSizeFromKnobPosition:
message. When the user releases the mouse button, the View receives a
placeView: message.

Characteristic Description

Category Of: NSView

Declared In: include/InterfaceBuilde/IBViewAdditions.h

C-16 OpenStep Development Tools—September 1996

C

Instance Methods

allowsAltDragging:

– (BOOL)allowsAltDragging

Return YES to allow your NSView subclass to be Alt-dragged to create a matrix.
The NSView must provide a cell for the resulting matrix.

maximumSizeFromKnobPosition:

– (NSSize)maximumSizeFromKnobPosition:(IBKnobPosition)knobPosition

Implement this method to control the maximum dimensions of your NSView.

The knobPosition argument specifies which control point the user is dragging
to resize the object. It can have these values:

IBBottomLeftKnobPosition
IBMiddleLeftKnobPosition
IBTopLeftKnobPosition
IBMiddleTopKnobPosition
IBTopRightKnobPosition
IBMiddleRightKnobPosition
IBBottomRightKnobPosition
IBMiddleBottonKnobPosition

You can use the knobPosition argument to determine how the NSView will
resize.

minimumSizeFromKnobPosition:

– (NSSize)minimumSizeFromKnobPosition:(IBKnobPosition)knobPosition

Implement this method to control the minimum dimensions of your NSView.

The knobPosition argument specifies which control point the user is dragging
to resize the object. It can have these values:

IBBottomLeftKnobPosition
IBMiddleLeftKnobPosition
IBTopLeftKnobPosition
IBMiddleTopKnobPosition

Interface Builder API Classes C-17

C

IBTopRightKnobPosition
IBMiddleRightKnobPosition
IBBottomRightKnobPosition
IBMiddleBottonKnobPosition

You can use the knobPosition argument to determine how the NSView will
resize. For example, an NSBox determines which control point is being dragged
and then lets the user shrink its size from that point only to the degree that no
subview (NSButton , NSTextField) would be obscured.

placeView:

– (void)placeView:(NSRect)newFrame

Notifies an NSView of a change in its frame size. Interface Builder’s
implementation of this method is to send a setFrame: message to the receiver,
using newFrame as the argument.

You can implement this method, for example, to resize the NSView’s subviews.
In your implementation, you should also send a setFrame: message to self to
set the NSView’s new size.

C-18 OpenStep Development Tools—September 1996

C

D-1

Interface Builder API Protocols D

IB

Protocol Description

Interface Builder’s subclass of the NSApplication class conforms to the IB
protocol. Thus, objects in your custom palette can interact with Interface
Builder’s main module by sending messages (corresponding to the methods in
this protocol) to the NSApplication object NSApp. for your application.

Characteristic Description

Adopted By: no OpenStep classes

Declared In: include/InterfaceBuilder/IBApplicationAdditions.h

D-2 OpenStep Development Tools—September 1996

D

Method Types

Instance Methods

activeDocument

– (id<IBDocuments>)activeDocument

Returns the active document, as represented by an object that conforms to the
IBDocuments protocol. The active document is represented by the nib file
window of the document containing the selection.

isTestingInterface

– (BOOL)isTestingInterface

Returns YES if Interface Builder is in Test mode.

selectionOwner

– (id<IBSelectionOwners>)selectionOwner

Returns the owner of the currently selected object or nil if no object is selected.

Activity Class Methods

Accessing the document – activeDocument

Accessing the selection owner – selectionOwner

Querying the mode – isTestingInterface

Interface Builder API Protocols D-3

D

IBConnectors

Protocol Description

This protocol declares the programmatic interface of connector objects.
Connectors are designed to store information about connections between objects
in a nib document. For example, the private class that Interface Builder uses to
store information about outlet connections conforms to this protocol and adds a
method to store the name of the outlet. Connector objects are archived in the nib
file.

When an application loads a nib file, the connector objects in the nib file are
unarchived and are sent the establishConnection message. In response to
this message, the connector establishes its type of connection between the source
and destination. For example, Interface Builder’s outlet connector sets the
named outlet to the destination object.

Your Connection inspector must set the source and destination in each of its
connectors (for example, with setSource: and setDestination: methods).
The protocol does not include methods to set these outlets, only to query them.

Characteristic Description

Adopted By: no OpenStep classes

Declared In: include/InterfaceBuilder/IBConnectors.h

D-4 OpenStep Development Tools—September 1996

D

Method Types

Instance Methods

destination

– (id)destination

Implement to return the object that is the destination of the connection. See also
– source.

establishConnection

– (void)establishConnection

Implement to connect the source and destination objects. Interface Builder sends
this message to each connector object after all objects have been unarchived from
the nib file.

label

– (NSString *)label

Implement to label the connection when it is displayed in the nib file window in
outline mode.

Activity Class Methods

Establishing a connection – establishConnection

Labeling a connection – label

Querying outlets – destination
– source
– nibInstantiate

Updating a connector – replaceObject:withObject

Interface Builder API Protocols D-5

D

nibInstantiate

– (id)nibInstantiate

Implement to verify the identities of the connector’s source and destination
objects.

Interface Builder sends a nibInstantiate message to allow a connector object
to verify that its source and destination instance variables point to the
intended objects. For example, consider the case in which a user puts an
NSCustomView in a window and then reassigns the NSCustomView ’s class to
MyView. The MyView class has a textfield outlet that the user connects to a
neighboring NSTextField object. This action causes Interface Builder to create
a connector object and set its destination to the NSTextField and its source to
the NSCustomView . The source cannot be set to the MyView object since that
class does not exist in InterfaceBuilder, which is why the NSCustomView was
used.

When the resulting nib file is loaded in the finished application, the connector
object is unarchived and sent a nibInstantiate message. At this point the
connector must reset its source instance variable from the NSCustomView
object to the MyView object.

The Application Kit, in a category of NSObject , provides a default
implementation of nibInstantiate . This implementation returns self .
Consequently, all objects can respond to a nibInstantiate message. Your
connector, therefore, should minimally implement nibInstantiate messages
to transmit this message to its source and destination objects. For example,
assuming the outlets are named theSource and theDestination , the
implementation is as follows:

- (id)nibInstantiate
{
 theSource = [theSource nibInstantiate];
 theDestination = [theDestination nibInstantiate];
 return self;
}

This allows the source and destination objects to return the id s of the intended
objects.

D-6 OpenStep Development Tools—September 1996

D

replaceObject:withObject:

– (void)replaceObject:(id)oldObject withObject:(id)newObject

Implement to update a connector by replacing its old source or destination object
(oldObject) with a new object (newObject). This is used by Interface Builder,
for example, when a user drags an NSButton object into an NSMatrix of
NSButtonCells . Assuming that the NSButton was connected, the connection
information must be updated to reflect the replacement of the NSButton by an
NSButtonCell . Interface Builder accomplishes this by sending the appropriate
connector object a replaceObject:withObject: message with the
NSButton as oldObject and the NSButtonCell as newObject .

source

– (id)source

Implement to return the object that is the source of the connection. See also
– destination.

IBDocuments

Protocol Description

IBDocuments is the protocol to use to communicate with Interface Builder’s
document object. The document object is private to Interface Builder but may be
accessed by sending Interface Builder’s subclass of NSApplication an
activeDocument message:

theActiveDoc = [NSApp activeDocument];

The document object maintains the following components of a document:

• The object hierarchy

• The list of connectors

• The active editor

Characteristic Description

Adopted By: no OpenStep classes

Declared In: include/InterfaceBuilder/IBDocuments.h

Interface Builder API Protocols D-7

D

It also mediates in copy and paste operations and controls the redisplay of
objects in Interface Builder.

Through the document object, you keep Interface Builder informed of changes to
the data structure that you want archived in the nib file. For example, if your
custom editor allows the user to add an object by dragging it into the editor’s
window, you must inform Interface Builder of this addition by sending the
document object an attachObject:toParent: message. Interface Builder
does not archive an object in the nib file unless it has been added to the object
hierarchy.

Note – A paste operation, which uses the
pasteType:fromPasteboard:parent: method, automatically updates the
hierarchy.)

Method Types

Activity Class Method

Managing the document – touch
– documentPath:

Managing the object hierarchy – attachObject:toParent:
– attachObjects:toParent:
– detachObject
– detachObjects
– replaceObject:withObject:
– objects:
– containsObject:
– parentOfObject:
– copyObject:type:toPasteboard:
– copyObjects:type:toPasteboard:
– pasteType:fromPasteboard:parent::

Setting object names – setName:forObject:
– nameForObject:
– containsObjectWithName:forParent:

D-8 OpenStep Development Tools—September 1996

D

Instance Methods

addConnector :
– (void)addConnector:(id<IBConnectors>)connector

Adds a connector object to the list maintained by the document. (See
“IBConnectors” on page D-3 for more information on connectors.) This is the
message a custom connection inspector sends Interface Builder’s document
object to register a connection. See also – removeConnector:.

attachObject:toParent:

– (void)attachObject:(id)object toParent:(id)parent

Adds object to the document’s object hierarchy by attaching it to parent .
This method (and the related method attachObjects:toParent:) lets you
keep the document’s object hierarchy informed of changes in the objects under
the control of your custom editor. See also – attachObjects:toParent:.

Managing connectors – addConnector:
– removeConnector:
– connectorsForSource:
– connectorsForSource:ofClass:
– connectorsForDestination:
– connectorsForDestination:ofClass

Managing editors – openEditorForObject:
– editorForObject:create:
– setSelectionFromEditor:
– resignSelectionForEditor:
– editor:didCloseForObject:

Updating the display – drawObject:

Activity Class Method

Interface Builder API Protocols D-9

D

attachObjects:toParent:

– (void)attachObjects:(NSArray *)objects toParent:(id)parent

Adds the objects in objects to the document’s object hierarchy by attaching
them to parent . This method (and the related method
attachObject:toParent:) lets you keep the document’s object hierarchy
informed of changes in the objects under the control of your custom editor. See
also – attachObject:toParent:.

connectorsForDestination:

– (NSArray*)connectorsForDestination:(id)destination

Places all connector objects whose destinations are destination in an array
and returns the array.

An object can be the destination of multiple connections, so the connectors
information are returned in an array. Each connector in the array conforms to
the IBConnectors protocol and contains the information for one connection.

Do not free the connection objects ; the array will autorelease. See also
– connectorsForDestination:ofClass: , – connectorsForSource:.

connectorsForDestination:ofClass:

– (NSArray*)connectorsForDestination:(id)destination
ofClass:(id)classObject

Places the connector objects of class classObject whose destinations are
destination in an array and returns the array.

An object can be the destination of multiple connections, so the connectors are
returned in an array. Each connector in the array conforms to the
IBConnectors protocol and contains the information for one connection.

Do not free the connection objects ; the array will autorelease. See also
– connectorsForDestination: , – connectorsForSource:.

D-10 OpenStep Development Tools—September 1996

D

connectorsForSource:

– (NSArray*)connectorsForSource:(id)source

Places all connector objects whose sources are source in an array and returns
the array.

A source can have multiple connections, so the connectors are returned in an
array. Each connector in the array conforms to the IBConnectors protocol and
contains the connection information for one connection.

Do not free the connection objects ; the array will autorelease. See also
– connectorsForSource:ofClass: , – connectorsForDestination:.

connectorsForSource:ofClass:

– (NSArray*)connectorsForSource:(id)source
ofClass:(id)classObject

Places the connector objects of class classObject whose sources are source in
an array and returns the array.

A source can have multiple connections, so the connectors are returned in an
array. Each connector in the array conforms to the IBConnectors protocol and
contains the connection information for one connection.

Do not free the connection objects ; the array will autorelease. See also
– connectorsForSource: , – connectorsForDestination:.

containsObject:

– (BOOL)containsObject:(id)object

Returns YES if object is a part of the document’s object hierarchy; NO
otherwise. You might send a containsObject: message to the document
object before attempting to open a subeditor for object .

Interface Builder API Protocols D-11

D

containsObjectWithName:forParent

– (BOOL)containsObjectWithName:(NSString *)name
forParent:(id)parent

Returns YES if the document contains an object named name that has the parent
parent .

copyObject:type:toPasteboard:

– (BOOL)copyObject:(id)object
type:(NSString*)type
toPasteboard:(NSPasteboard *)pasteboard

Copies object to the specified pasteboard. The type argument can be one of
the following:

IBObjectPboardType
IBCellPboardType
IBMenuPboardType
IBMenuCellPboardType
IBViewPboardType
IBWindowPboardType

An editor should send the active document object a
copyObject:type:toPasteboard: or
copyObjects:type:toPasteboard: message as part of its implementation
of its copySelection method. See also
– copyObjects:type:toPasteboard:.

copyObjects:type:toPasteboard:

– (BOOL)copyObjects:(NSArray*)objects
type:(NSString*)type
toPasteboard:(NSPasteboard *)pasteboard

Copies the objects in objects to the specified pasteboard. The type argument
can be one of the following:

IBObjectPboardType
IBCellPboardType
IBMenuPboardType

D-12 OpenStep Development Tools—September 1996

D

IBMenuCellPboardType
IBViewPboardType
IBWindowPboardType

An editor should send the document object a
copyObject:type:toPasteboard: or
copyObjects:type:toPasteboard: message as part of its implementation
of its copySelection method. See also
– copyObject:type:toPasteboard:.

detachObject :
– (void)detachObject:(id)object

Removes object from the document’s object hierarchy. An editor should send
the document object a detachObject: or detachObjects: message as part
of its implementation of the deleteSelection method. If any connections are
associated with the object, they are deleted as well. See also
– detachObjects:.

detachObjects:

– (void)detachObjects:(NSArray *)objects

Removes the objects in objects from the document’s object hierarchy. An
editor should send the document object a detachObject: or
detachObjects: message as part of its implementation of the
deleteSelection method. If any connections are associated with the object,
they are deleted as well. See also – detachObject:.

documentPath

– (NSString *)documentPath

Returns the path name for the document’s directory wrapper. The path is
displayed as the title of Interface Builder’s File window.

Interface Builder API Protocols D-13

D

drawObject:

– (void)drawObject:(id)object

Redraws the selected object by opening its editor, the editor for its parent object,
and so on up the object hierarchy. Each editor is also sent a resetObject:
message.

editor:didCloseForObject:

– (void)editor:(id<IBEditors>)editor didCloseForObject:(id)object

Informs the document object that anEditor is no longer active. By sending this
message to the document object when an editor is closed, Interface Builder’s
record of the active editor is kept up to date. Interface Builder itself invokes this
method whenever an editor is closed because of a user action, such as the closing
of a window.

editorForObject:create:

– (id<IBEditors>)editorForObject:(id)object create:(BOOL)createIt:

Returns the editor object for object . If createIt is YES and the editor has not
been instantiated, it is instantiated and returned. If createIt is NO, the editor
is returned only if it has already been instantiated. If createIt is NO and the
editor has not been instantiated, this method returns nil .

nameForObject:

– (NString*)nameForObject:(id)object

Returns the name associated with object . See also – setName:forObject:.

objects:

– (NSArray*)objects:

Returns the objects from the document’s object hierarchy in an array. The objects
are not arranged in any particular order.

D-14 OpenStep Development Tools—September 1996

D

openEditorForObject:

– (id<IBEditors>))openEditorForObject:(id)object

Opens the editor object for object . This method ensures that editors for all the
objects above object in the object hierarchy are open before opening object ’s
editor.

parentOfObject :
– (id)parentOfObject:(id)object

Returns the object above object in the document’s object hierarchy. The top
object is the File’s owner. Returns nil if object is the File’s owner.

pasteType:fromPasteboard:parent:

– (NSArray*)pasteType:(NSString *)type
fromPasteboard:(NSPasteboard *)pasteboard
parent:(id)parent

Returns an array containing the objects that are in the pasteboard. The
pasteboard and the type being pasted are identified by pasteboard and type .

The implementation of this method invokes attachObjects:toParent: and
touch . The returned array object provides your code with access to pasted
objects so you can add them to your code’s data structures. The array will
autorelease.

removeConnector :
– (void)removeConnector:(id<IBConnectors>)connector

Removes connector from the list of connectors maintained by the document.
(See “IBConnectors” on page D-3 for more information on connectors.) A
custom connection inspector sends the document object this message to break a
connection.

Interface Builder does not free connector ; it is your responsibility to do so. See
also – addConnector:.

Interface Builder API Protocols D-15

D

replaceObject:withObject:

– (void)replaceObject:(id)oldObject withObject:(id)newObject

Implement to update a connector by replacing its old source or destination object
(oldObject) with a new object (newObject). For example, this is used by
Interface Builder when a user Alt-drags a resize handle on an NSButton object
causing the NSButton to be replaced by an NSMatrix of NSButtonCells .
Assuming that the NSButton was connected, the connection information must
be updated to reflect that fact that the NSButton has been replaced by an
NSButtonCell . Interface Builder updates this information by sending the
appropriate connector object a replaceObject:withObject: message with
the NSButton as oldObject and the NSButtonCell as newObject .

resignSelectionForEditor:

– (void)resignSelectionForEditor:(id <IBEditors>)editor

Unregisters editor as the editor that owns the selection. See also
– setSelectionFromEditor: .

setName:forObject:

– (BOOL)setName:(NSString*)name forObject:(id)object

Sets the name associated with object . For objects in the File window, this is the
name displayed below the object’s image. Except for objects in the File window,
setting an object’s name is generally not needed. See also
 – nameForObject:.

setSelectionFromEditor:

– (void)setSelectionFromEditor:(id<IBEditors>)editor

Registers editor as the editor that owns the selection.

When you activate an editor or change the selection, make sure you send this
message to the document object to keep Interface Builder informed of the
selection’s owner. In this way, when the user switches from one window to
another, or from one document to another, Interface Builder can inform the
proper editor to display its selection. Also, Interface Builder uses the selection
information to determine which inspector to display in its Inspector panel.

D-16 OpenStep Development Tools—September 1996

D

touch

– (void)touch

Marks the document as edited. When you deactivate an editor, the nib file
window’s close box displays a broken “X” to indicate the edited status.

IBEditors

Protocol Description

IBEditors , and the IBSelectionOwners protocol that it incorporates, define
the required programmatic interface to an editor object in Interface Builder.
When a user double-clicks on a custom object, Interface Builder instantiates the
object’s editor (using initWithObject:inDocument:). (Interface Builder
would have previously determined the editor’s class by sending the custom
object a getEditorClassName message. See “NSObject Additions” on
page C-11 for more information.) The editor presents its window, allowing the
user to make alterations to the displayed data.

For example, assume that a custom palette provides an AddressBook object.
Once instantiated in the File window, the AddressBook object can be double-
clicked to activate the editor. The editor presents the user with a window that
permits the entry of names and addresses. As data is entered, the editor can
update the AddressBook object with the new information.

Besides letting users edit an object’s state, an editor intercedes in copy and paste
operations. When the user chooses the Cut or Copy command, Interface Builder
sends a deleteSelection or copySelection message to the editor. The
editor takes the appropriate action and then alerts Interface Builder’s document
object that the cut or copy operation has occurred. This keeps the document
object up-to-date with the actual state of the document.

Characteristic Description

Adopted By: no OpenStep classes

Incorporates: IBSelectionOwners

Declared In: include/InterfaceBuilder/IBEditors.h

Interface Builder API Protocols D-17

D

When a paste operation is attempted, Interface Builder sends the active editor an
acceptsTypeFromArray: message to determine if it will accept any of the
types on the pasteboard. If the editor refuses the offered types, Interface Builder
sends the same message to the next higher editor in the object hierarchy, and so
on until it reaches the top. This explains why, if a paste operation is attempted
when an NSButton object is on the pasteboard and the Pop-up list editor is
open, nothing is pasted in the selected NSPopUpList ; instead, the NSButton is
pasted in the window that contains the NSPopUpList . The NSPopUpList
refused the pasteboard type, but the view editor accepted it.

If the editor accepts one of the offered types, the editor receives a
pasteInSelection message. The editor then replaces the selection with the
pasted data and alerts Interface Builder of the change by sending the document
object a pasteType:fromPasteboard:parent: message.

Editors also control the opening and closing of subeditors.

Method Types

Activity Class Methods

Editing objects – initWithObject:inDocument:
– close:

Identifying objects – document
– editedObject
– window

Displaying objects – resetObject:

Managing the selection – wantsSelection
– selectObjects:
– makeSelectionVisible:

Copying and pasting objects – copySelection
– deleteSelection
– pasteInSelection
– acceptsTypeFromArray:

Opening and closing editors – openSubeditorForObject:
– closeSubeditors

Activating the editor – orderFront
– activate
– validateEditing:

D-18 OpenStep Development Tools—September 1996

D

Instance Methods

acceptsTypeFromArray :
– (BOOL)acceptsTypeFromArray:(NSArray*)types

Implement to return the pasteboard types your editor accepts. types is an array
of strings holding the type names. If your editor does not accept any of the
supplied types, it should return nil .

For example, if an editor only accepts the type IBObjectPboardType , it could
implement this method in the following way:

– (BOOL)acceptsTypeFromArray:(NSArray*)types
{
 int i = 0;
 if (!types) {

return nil;

}
 for (i=0; i<[types count];i++){

if ([[types objectAtIndex:i] isEqual:IBObjectPoardType]){

return IBObjectPboardType;

}

}
 return nil;
}

activate

– (BOOL)activate

Implement to activate the editor. Typically, an editor activates itself by making
its window key, displaying its selection, and advising the document object that it
owns the selection:

- (BOOL)activate
{
 [window makeKeyAndOrderFront:self];
 [self makeSelectionVisible:YES];
 [document setSelectionFrom:self];
 return YES;
}

Interface Builder API Protocols D-19

D

Your implementation of this method should return YES if the editor activates
itself and NOotherwise.

When a user double-clicks on an object controlled by an editor, the editor
receives an orderFront and then an activate message. See also
– orderFront.

close

– (void)close

Implement to close the editor and free its resources. This method can be invoked
for a number of reasons. For example, Interface Builder invokes this method
when the user closes the document. Or, your editor might send itself a close
message when the user closes the editor’s window.

As part of the implementation of this method, send an
editorDidClose:forObject: message to the active document to inform IB
that the editor has closed:

[[NSApp activeDocument] editorDidClose:self
forObject:editedObject];

See also – editorDidClose:forObject: (IBDocuments protocol).

closeSubeditors

– (void)closeSubeditors

Implement to close all subeditors. See also – openSubeditorForObject:.

copySelection

– (BOOL)copySelection

Implement to copy the selected object(s) to the pasteboard. When the user
chooses the Cut or Copy commands in Interface Builder, the editor that owns the
selection receives a copySelection message.

In your implementation of this method, you should send the document object a
copyObject:type:inPasteboard: or a
copyObjects:type:inPasteboard: message, as declared in the
IBDocuments protocol. Return YES if the selection was copied to the
pasteboard; NOotherwise. See also – deleteSelection.

D-20 OpenStep Development Tools—September 1996

D

deleteSelection

– (BOOL)deleteSelection

Implement to delete the selected object(s). This method is invoked when the
user deletes the selection by using the Delete key, the Delete command, or as
part of the Cut command (after the selection has been copied using the
copySelection method).

In your implementation of this method, you should send the document object a
detachObject: or a detachObjects: message, as declared in the
IBDocuments protocol. Return YES if the selection was deleted; NO otherwise.
See also – copySelection.

document

– (id<IBDocuments>)document

Implement this method to return the document to which the object being edited
belongs.

editedObject

– (id)editedObject

Implement to return the object that is being edited. This is generally the object
on which the user double-clicked to open the editor.

initWithObject:inDocument:

– (id)initWithObject:(id)object
inDocument:(id/*<IBDocuments>*/)document

Implement this method to initialize a newly allocated editor. object is the
object that is being edited (for example, the object on which the user has double-
clicked). document is the currently active document, as would be returned by
sending an activeDocument message to NSApp. Typically, an editor object
caches the document object in one of its instance variables, since editors must
frequently communicate with the document object.

Interface Builder API Protocols D-21

D

makeSelectionVisible:

– (void)makeSelectionVisible:(BOOL)showIt

Implement to add or remove the selection markings from the current selection.
An editor receives a makeSelectionVisible: message whenever Interface
Builder wants to ensure that the selection is properly marked. For example,
when a window becomes key, the editor that owns the selection in the window
receives a makeSelectionVisible:YES message. When the window loses its
key window status, the editor that owns the selection receives a
makeSelectionVisible:NO message.

openSubeditorForObject :
– (id<IBEditors>)openSubeditorForObject:(id)object

Implement to open the subeditor for anObject . An editor receives this message
when the user double-clicks in the editor’s selection. For the return value of this
method, the editor should return nil if there is no subeditor; otherwise, it
should return of the subeditor object.

orderFront

– (void)orderFront

Implement to bring the editor’s window to the front. When a user double-clicks
on an object, the controlling editor receives an orderFront and then an
activate message. See also – activate.

pasteInSelection

– (BOOL)pasteInSelection

Implement to paste the object(s) from the pasteboard into the current selection.
When the user chooses the Paste command in Interface Builder, the editor that
owns the selection receives a pasteInSelection message. The
implementation of the corresponding method should invoke the document
object’s pasteType:fromPasteboard:parent: method.

This method should return YES if the paste operation was successful; NO
otherwise. See also – pasteType:fromPasteboard:parent:
(IBDocuments protocol).

D-22 OpenStep Development Tools—September 1996

D

resetObject:

– (void)resetObject:(id)object

This method should redraw object . When the document object receives a
drawObject: message, it makes sure that the editor for that object—and for
each of its parent objects—is open. It then sends resetObject: messages to
each of the editors in this object hierarchy.

selectObjects:

– (void)selectObjects:(NSArray *)objects

Implement to draw the objects for the array to indicate that they are all selected.

validateEditing

- (void)validateEditing

Causes the value of the selection to be set to the value of the field being edited, if
any. “Being edited” does not necessarily mean a user is typing. If a field (for
example, an NSTextField object) has Interface Builder’s global NSText object
in its place as first responder, then the field is considered as being edited.

wantsSelection

– (BOOL)wantsSelection

Implement to return YES if the editor is willing to become the selection owner;
NO if not.

window

– (NSWindow*)window

Implement to return the editor’s window.

Interface Builder API Protocols D-23

D

IBSelectionOwners

Protocol Description

All editors must conform to the IBSelectionOwners protocol. By
implementing this protocol, an editor advertises its selection to other objects in
Interface Builder. (The selection is that object or objects that would be copied if
the user chose the Copy command.)

For example, Interface Builder invokes an editor’s selectionCount and
getSelectionInto: methods to determine how to update the Inspector panel.
If the selection count is more than one, the Inspector panel displays the message
“Multiple Selection”. If there is only one object in the selection, Interface Builder
invokes the editor’s getSelectionInto: method to access the object and then
determines the appropriate inspector to display in the Inspector panel.

Instance Methods

drawSelection

– (void)drawSelection

Implement this method to redraw the objects in the selection.

selection:

– (NSArray*)selection

Implement this method to place the currently selected objects into an array
object. If the editor does not have a selection, it should return an empty array.
See also – selectionCount.

Characteristic Description

Adopted By: no OpenStep classes

Declared In: include/InterfaceBuilder/IBEditors.h

D-24 OpenStep Development Tools—September 1996

D

selectionCount

– (unsigned int)selectionCount

Implement to return the number of objects in your editor’s selection. See also
– selection:.

E-1

Interface Builder API Types and
Constants E

Symbolic Constants

Control Point Constants

Synopsis

IB_BottomLeftKnobPosition
IB_MiddleLeftKnobPosition
IB_TopLeftKnobPosition
IB_MiddleTopKnobPosition
IB_TopRightKnobPosition
IB_MiddleRightKnobPosition
IB_BottomRightKnobPosition
IB_MiddleBottomKnobPosition

Description

These constants identify the control points that appear around a selected
NSView object in a application that is under construction. See the descriptions of
the minimumSizeForCelSize: and maximumSizeForCellSize: methods
in “NSCellAdditions” on page C-14 and the

Characteristic Description

Delcared In: include/InterfaceBuilder/IBViewAdditions.h

E-2 OpenStep Development Tools—September 1996

E

minimumSizeFromKnobPosition: and
maximumSizeFromKnobPosition: methods in “NSView Additions” on
page C-15 for more information.

Global Variables

Notification Types

Synopsis

NSString IBWillAddConnectorNotification
NSString IBDidAddConnectorNotification
NSString IBWillRemoveConnectorNotification
NSString IBDidRemoveConnectorNotification
NSString IBDidOpenDocumentNotification
NSString IBWillSaveDocumentNotification
NSString IBDidSaveDocumentNotification
NSString IBWillCloseDocumentNotification

Description

These global variables identify additional notification types used by Interface
Builder. The types are used in notifying when Interface Builder documents are
opened or saved, or when connections between objects have been added or
removed.

Characteristic Description

Declared In: include/InterfaceBuilder/IBConnectors.h

Characteristic Description

Declared In: include/InterfaceBuilder/IBEditors.h

Interface Builder API Types and Constants E-3

E

Synopsis

NSString IBSelectionChangedNotification
NSString IBAttributesChangedNotification

Description

These global varaibles identify some additional notification types used by
Interface Builder. The types are used in notifying when the selection has changed
and when the user has changed an object’s attributes in the Inspector.

Pasteboard Types

Synopsis

NSString IBObjectPboardType;
NSString IBCellPboardType;
NSString IBMenuPboardType;
NSString IBMenuCellPboardType;
NSString IBViewPboardType;
NSString IBWindowPboardType;

Description

These global variables identify some additional pasteboard types used by
Interface Builder. See “IBPalette” on page C-6 for information on the use of these
types.

Characteristic Description

Declared In: include/InterfaceBuilder/IBPalette.h

E-4 OpenStep Development Tools—September 1996

E

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 USA.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX Systems Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administation
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFAR 252.227- 7013 et FAR 52.227-19.

Le produit décrit dans ce manuel peut être protege par un ou plusieurs brevet(s) americain(s), etranger(s) ou par des
demandes en cours d’enregistrement.

MARQUES
Sun, Sun Microsystems, le logo Sun, SunSoft, le logo SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, NFS, et
NEO sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. OpenStep
est une marque enregistrée de NeXT Software, Inc. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays,
et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée de Novell, Inc. PostScript et
Display PostScript sont des marques d’Adobe Systems, Inc. Object Design est une marque deposée et le logo Object Design
est une marque enregistrée d’Object Design, Inc.

Toutes les marques SPARC sont des marques deposées ou enregistrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

Ce produit incorpore la technologie licencié par Object Design, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

Index-1

Index

A
abstract classes 8-12
– acceptsTypeFromArray: (IBEditors)

D-18
action 3-5, 3-91, 3-111, 3-112, 3-113

adding to class 3-145
allowing 3-51
and First Responder object 3-20
connecting 3-116, 3-120, 3-151
File’s Owner as target of 3-19
mouse 3-52
naming 3-146
reducing 3-52
sent by button click 3-72
specifying 3-143
specifying for class 3-143
target of 3-91
within panel 3-71
without explicit target 3-20

action message. See action
action messages 8-37
action method. See action
– activate (IBEditors) D-18
– activeDocument (IB) D-2
Add action command in Interface Builder

3-146
Add command in Project Builder 2-34

Add Help Directory command in Project
Builder 2-33, 3-134

Add outlet command in Interface Builder
3-144

– addConnector: (IBDocuments) D-8
adding existing classes 3-162
Align Left command in Edit 4-29
Align Right command in Edit 4-29
Align submenu in Interface Builder 3-175
Align To Grid command in Interface

Builder 3-47, 3-176
Alignment command in Interface Builder

3-45, 3-177
alignment grid 3-45
alignment in Edit

paragraph 4-29
alignment of text 3-84
Alignment panel in Interface Builder 3-46
+ alloc method 8-16
allocating instances 8-16
– allowsAltDragging (NSView

Additions) C-16
application

building in Interface Builder 3-4
debugging 2-32, A-1–A-20
directory 1-6
installation 1-6

Index-2 OpenStep Development Tools—September 1996

application (Continued)
project in Project Builder 2-2
running in Project Builder 2-32
search path 1-6

Application Kit 3-4, 3-5, 3-141
arguments, variable number of 8-5, 8-23,

8-26
arranging objects 3-45
assigning Command key 3-61
– associateObject:ofType:withView:

(IBPalette) C-8
– attachObject:toParent: (IBDocuments)

D-8
– attachObjects:toParent: (IBDocuments)

D-9
attributes

automatic resizing 3-99, 3-100
examining 3-65
images 3-80
of images in buttons 3-77
of NSBox 3-85
of NSBrowser 3-87
of NSButton 3-71
of NSMatrix 3-95
of NSMenuCell 3-89
of NSScrollView 3-82
of NSTextField 3-81
of panel 3-67
of pop-up/pull-down lists 3-89
of sounds in buttons 3-77
of text 3-84
of window 3-67
sounds 3-80

Attributes display 3-65
and NSView subclass 3-160

automatic resizing 3-98
examples 3-102
potential conflicts 3-101

autotyping of outlets 3-166
auxiliary nib file 3-19, 3-23, 3-137
– awakeFromDocument (NSObject

Additions) C-12

B
backtrace

setting breakpoint for A-18
branch node 3-87
breaking connections 3-130
breakpoint

setting for backtrace A-18
setting in Objective C method A-2
stopping at when filter matches A-13,

A-15, A-16, A-17
to catch errors A-5

Bring To Front command in Interface
Builder 3-57

browser 3-87
attributes 3-87
structure 3-93

buffered window 3-69
Build Application command in Project

Builder 2-34
bundle project in Project Builder 2-2
button

and sounds and images 3-75
attributes 3-71
icon 3-71
methods 3-73
options 3-74
radio 3-71, 3-96
setting key equivalent 3-73
structure 3-72
switch 3-71, 3-96
title 3-73
type 3-74

C
C++, using with Objective C 8-1
+ canSubstituteForClass (NSObject

Additions) C-12
cell options (matrix) 3-98
cell prototype (matrix) 3-96
– cellWillAltDragWithSize (NSCell

Additions) C-14
Center command in Edit 4-29

Index-3

Check Spelling command in Edit 4-26
class

and Attributes display 3-66
and connecting actions 3-151
and connecting outlets 3-149
creating 3-137–3-164
creating instance of 3-147
locating 3-143
naming 3-141
selecting superclass 3-141
updating definition 3-163

Class data type 8-15
@class directive 8-24
class hierarchy 3-142

viewing 3-143
+ class method 8-15
– class method 8-15
class methods 8-15, 8-22
class objects 8-8, 8-14–8-19, 8-20
classes 8-8–8-31

declaration of 8-21–8-25
implementation of 8-25–8-31

Classes display in Interface Builder 3-14,
3-15, 3-141, 3-142, 3-143

Close Ancestors command in Edit 4-34
close button 3-69
Close Descendants command in Edit 4-34
– close (IBEditors) D-19
– closeSubeditors (IBEditors) D-19
_cmd 8-39
code

generating 3-153
columns of objects 3-48
Command command in Edit 4-22, 4-32
Command key

assigning 3-61
connecting

actions 3-151
objects 3-113
outlets 3-149

– connectInspectorClassName
(NSObject Additions) C-12

connections
and outline mode 3-13
between fields 3-128
examining 3-122
in outline mode 3-120
within interface 3-118

Connections display 3-114, 3-117, 3-120,
3-122, 3-123, 3-124, 3-128, 3-130,
3-149, 3-152, 3-156

– connectorsForDestination:
(IBDocuments) D-9

– connectorsForDestination:ofClass:
(IBDocuments) D-9

– connectorsForSource: (IBDocuments)
D-10

– connectorsForSource:ofClass:
(IBDocuments) D-10

consistency
and UI design 3-51

– containsObject: (IBDocuments) D-10
– containsObjectWithName:forParent:

(IBDocuments) D-11
contents of nib file 3-24
Contract All command in Edit 4-31
Contract Sel command in Edit 4-31
controller object 3-114, 3-117
coordinate system 3-50
Copy command in Interface Builder 3-44
Copy PS command in Edit 4-34
Copy Ruler command in Edit 4-30
copying objects

between nib files 3-44
between windows 3-44

– copyObject:type:toPasteboard:
(IBDocuments) D-11

– copyObjects:type:toPasteboard:
(IBDocuments) D-11

– copySelection (IBEditors) D-19
creating a nib file 3-22
creating matrices 3-58
creating menus 3-60

Index-4 OpenStep Development Tools—September 1996

custom class 3-66
custom menus 3-62
customizing

with class objects 8-16–8-18
Cut command in Interface Builder 3-49,

3-61

D
~/.dbxrc file A-2, A-3
dbx customization variables

output_dynamic_type A-2, A-4
scope_look_aside A-4

dbxInfo.o A-20
Debug Application command in Project

Builder 2-34
Debugger A-1

Objective C support A-1
debugging

an application 1-5
debugging an application A-1–A-20

functions for
_cb_prompt A-9
allbrks A-5
attach A-8
collOn A-8
defbrks A-5
ff A-9
hex A-10
hexdump A-10
memoff A-5
memon A-4
morebrks A-5
objchelp A-4
pcounts A-6
pdesc A-6
penviron A-9
pg A-10
pnsstring A-6
prstar A-6
pselfvar A-6

user default variables for
NSEnableAutoreleasePool A-13

NSEnableDoubleReleaseCheck
A-13

NSHideOnDeactivateEnabled
A-13

NSPauseAtStartup A-13
NSSetPoolThreshold A-13
NSShowAllViews A-13
NSShowAllWindows A-13
NSShowDrawTimes A-13
NSShowEvents A-13
NSShowPS A-13
NSShowWindowInfo A-13
NSShowXEvents A-13
NSTrapIllegalFloatingPointOps

A-13
using optimized libraries A-20

delegate 3-110
making your class a 3-156

– deleteSelection (IBEditors) D-20
deleting objects 3-49
design guidelines 3-51
– destination (IBConnectors) D-4
– detachObject: (IBDocuments) D-12
– detachObjects: (IBDocuments) D-12
disconnecting objects 3-130
displaying connections 3-122
– document (IBEditors) D-20
Document Layout command in Icon

Builder 5-19
Document menu

in Icon Builder 5-18
in Interface Builder 3-171

– documentPath: (IBDocuments) D-12
– drawObject: (IBDocuments) D-13
– drawSelection (IBSelectionOwners)

D-23
dynamic binding 8-7–8-8, 8-31–8-34
dynamic typing 8-4

Index-5

E
Edit application

command reference 4-24
command-line options 4-2
and UNIX 4-21
windows 4-14

Edit class command in Interface Builder
3-145

Edit menu
in Edit 4-26
in Interface Builder 3-173

– editedObject (IBEditors) D-20
– editor:didCloseForObject:

(IBDocuments) D-13
– editorClassName (NSObject

Additions) C-12
– editorForObject:create:(IBDocuments)

D-13
Emacs

commands in Edit 4-21
enabling messageSendDebug A-14
@end directive 8-21
– establishConnection (IBConnectors)

D-4
examining connections 3-122
Expand All command in Edit 4-31
Expand Sel command in Edit 4-31
Expansion Dictionary command in Edit

4-34

F
fields

tabbing between 3-128
File’s Owner 3-18
file’s owner object 3-18
Files menu in Project Builder 2-34
filter match

setting a breakpoint on A-17
filtering mechanism

implementing A-19

filters
adding A-14, A-16
disabling A-17
listing current A-19
removing A-17

Find menu
in Edit 4-27

– finishInstantiate (IBPalette) C-9
First Responder object in Interface Builder

3-20
Font command in Interface Builder 3-174
Font menu

in Edit 4-28
fonts 3-84
form field 3-119
Format menu

in Edit 4-28
in Icon Builder 5-19
in Interface Builder 3-173

Foundation Kit 3-141
funcs command in Debugger A-2

G
generating code 3-153
group attributes 3-85
Group command in Interface Builder 3-55,

3-175
Group in ScrollView command in

Interface Builder 3-57, 3-175
Group in SplitView command in Interface

Builder 3-57, 3-175
Group submenu in Interface Builder 3-56,

3-175
grouping objects 3-34, 3-55, 3-86

H
header file 3-153, 3-162, 3-163, 3-164
Help Builder command in Interface

Builder 3-134, 3-178
Help Builder panel in Interface Builder

3-132

Index-6 OpenStep Development Tools—September 1996

Help menu in Edit 4-30
help, providing in applications 3-132
– helpInspectorClassName (NSObject

Additions) C-13
Hide Grid command in Interface Builder

3-176
Hide Links command in Edit 4-26
Hide Markers command in Edit 4-30
Hide Ruler command in Edit 4-29

I
IB protocol

specification D-1
IB_BottomLeftKnobPosition constant E-1
IB_BottomRightKnobPosition constant

E-1
IB_MiddleBottomKnobPosition constant

E-1
IB_MiddleLeftKnobPosition constant E-1
IB_MiddleRightKnobPosition constant

E-1
IB_MiddleTopKnobPosition constant E-1
IB_TopLeftKnobPosition constant E-1
IB_TopRightKnobPosition constant E-1
IBAttributesChangedNotification global

E-3
IBCellPboardType global E-3
IBConnectors protocol

specification D-3
IBDidAddConnectorNotification global

E-2
IBDidOpenDocumentNotification global

E-2
IBDidRemoveConnectorNotification

global E-2
IBDidSaveDocumentNotification global

E-2
IBDocuments protocol

specification D-6
IBEditors protocol

specification D-16

IBInspector class
specification C-1

IBInspectors protocol
specification D-22

IBMenuCellPboardType global E-3
IBMenuPboardType global E-3
IBObjectPboardType global E-3
IBPalette class

specification C-6
IBSelectionChangedNotification global

E-3
IBSelectionOwners protocol

specification D-23
IBViewPboardType global E-3
IBWillAddConnectorNotification global

E-2
IBWillCloseDocumentNotification global

E-2
IBWillRemoveConnectorNotification

global E-2
IBWillSaveDocumentNotification global

E-2
IBWindowPboardType global E-3
icon

editing 5-3
Icon Builder application

command reference 5-18
icon mode 3-11
icon position 3-78
id data type 3-163, 3-166, 8-3–8-4, 8-13
identifying objects

outline mode 3-127
with tags 3-107

identifying outlets and actions 3-143
IDL template object

adding to your interface 3-164
connecting 3-165
instantiating 3-165
name 3-165

IDL type file
parsing 3-164

image files in Project Builder 2-16

Index-7

– imageForViewer (NSObject Additions)
C-13

– imageNamed: (IBPalette) C-8
images

adding to project 3-77, 3-80
as decoration 3-78
associating with buttons 3-75
inspecting 3-80

@implementation directive 8-25
implementation file 3-154, 3-162
implementing a class

NSView 3-158–3-161
subclass of NSObject 3-155

#import directive 8-23
indentation in Edit 4-9
inheritance 8-9–8-12
– init method 8-16
+ initialize method 8-19
initializing

classes 8-19
instances 8-16

initializing text 3-38
– initWithObject:inDocument:

(IBEditors) D-20
Insert Field command in Edit 4-34
Insert Link command in Edit 4-30
Insert Marker command in Edit 4-30
inserting custom class 3-162
Inspector command in Icon Builder 5-20
Inspector command in Interface Builder

3-22, 3-37, 3-80
Inspector panel in Interface Builder 3-4,

3-21, 3-22
Attributes display 3-63
Connections display 3-114, 3-120,

3-122, 3-123, 3-124
Help display 3-136
Size display 3-36, 3-37, 3-40, 3-98

– inspectorClassName (NSObject
Additions) C-13

instance
generating 3-147

instance methods 8-15, 8-22
instance variables 8-2–8-3

declaration of 8-22
inheriting 8-11
referring to 8-26–8-31
scope of 8-28–8-31

Instances display 3-65
and attributes 3-65
icon mode 3-11
making connections 3-115
outline mode 3-12

instances of a class 8-8
allocating 8-16
initializing 8-16

Instantiate command in Interface Builder
3-147

instantiation 3-115
NSObject subclass 3-161
NSView object 3-162

Interface Builder application
Alignment panel 3-46
application, building 3-4
application, testing 3-136
attributes, setting 3-63
command reference 3-171
connections, setting 3-113
coordinate system 3-50
custom palette, adding 3-169
file’s owner object 3-18
First Responder object 3-20
help attachments, reviewing 3-135
help, attaching 3-132
Inspector panel 3-4, 3-21
nib file 3-24
nib file window 3-4
NSView objects, setting size and

position of 3-40
object, attaching help 3-132
object, examining 3-65
overview 3-3
Palettes window 3-4
preferences, setting 3-167
role in class creation 3-138

interface design 3-51

Index-8 OpenStep Development Tools—September 1996

@interface directive 8-21
interface files in Project Builder 2-16
interface window 3-9
introspection 8-4, 8-14
isa instance variable 8-4
– isKindOf: method 8-14
– isMemberOf: method 8-14
– isTestingInterface (IB) D-2

K
keyboard events 3-20

L
– label (IBConnectors) D-4
layering objects 3-57
leaf node 3-87
Line Range command in Edit 4-27
line, making in interface 3-87
Link Inspector command in Edit 4-26
Link Menu in Edit 4-26
Load Tool command in Icon Builder 5-20
localization 2-2

M
main menu 3-60
Make ASCII command in Edit 4-29
Make Column command in Interface

Builder 3-48, 3-177
Make Global command in Project Builder

2-34
Make Localizable command in Project

Builder 2-35
make program 1-4, 2-23
Make Rich Text command in Edit 4-29
Make Row command in Interface Builder

3-48, 3-177
Make Template Object command in

Interface Builder 3-165

makefile 1-4
preamble and postamble 2-24

– makeSelectionVisible: (IBEditors)
D-21

managing sounds and images 3-78
Manual command in Edit 4-33
Match command in Edit 4-33
matrix 3-92

attributes of 3-95
class (NSMatrix) 3-92
creating 3-58
initializing text 3-39
options 3-98
selection mode 3-95

– mazimumSizeForCellSize (NSCell
Additions) C-14

– maximumSizeFromKnobPosition:
(NSView Additions) C-16

menu cells 3-60
activating 3-60
attributes 3-63
deleting 3-61
re-sequencing 3-61

Menu palette 3-60, 3-62
menus

creating 3-60
custom 3-62

Menus palette 3-28
message expressions 8-5
message receiver 8-5
messages 8-5–8-6
messageSendDebug

enabling using dwrite A-14
invoking from a program or

Debugger A-15
messaging 8-7–8-8, 8-31–8-34
method 3-91, 3-111, 3-112, 3-151

for NSButton and NSButtonCell 3-73
methods 8-2–8-3

class methods 8-15, 8-22
declaration of 8-22–8-23
implementation of 8-26
inheriting 8-11–8-12

Index-9

methods (Continued)
instance methods 8-15, 8-22
of the root class 8-19
overriding 8-11–8-12
return and argument types 8-35

miniaturize button 3-69
– minimumSizeForCellSize (NSCell

Additions) C-15
– minimumSizeFromKnobPosition

(NSView Additions) C-16
mouse

actions 3-52
mouse events 3-20
moving objects

to other windows 3-43
within same window 3-33

N
– nameForObject: (IBDocuments) D-13
New Application command in Interface

Builder 3-23, 3-171
New Attention Panel command in

Interface Builder 3-172
New command in Project Builder 2-33
New Empty command in Interface Builder

3-23, 3-172
New Info Panel command in Interface

Builder 3-172
New Inspector command in Interface

Builder 3-172
New Layout command in Icon Builder

5-19
New Module command in Interface

Builder 3-171
New Palette command in Interface Builder

3-172
New Subproject command in Project

Builder 2-33
Next Field command in Edit 4-34
nib file

adding classes 3-162
contents 3-24

creating 3-22
main 3-24
owner 3-18
run-time behavior 3-27
saving 3-23
updating 3-163

nib file window in Interface Builder 3-4
Classes display 3-14, 3-142
File’s Owner icon 3-19
First Responder icon 3-20
Images display 3-15
Instances display 3-11, 3-12, 3-65,

3-123, 3-124
Sounds display 3-16

– nibInstantiate (IBConnectors) D-5
nil 8-3, 8-6
nonretained window 3-68
NSActionCell 3-112
NSApplication Additions

specification C-9
NSBox object 3-56
NSBrowser 3-87

attributes 3-87
structure 3-93

NSButtonCell 3-92
NSCell 3-92
NSCellAdditions category

specification C-14
NSClipView 3-93
NSControl object 3-19, 3-20, 3-91, 3-111,

3-116, 3-145, 3-151
NSCustomView 3-158
NSForm 3-92
NSObject 3-158

implementing a subclass of 3-155
NSObjectAdditions category

specification C-11
NSPanel 3-69
NSPopUpButton 3-94
NSScroller 3-93
NSScrollView 3-81, 3-82, 3-84, 3-93
NSSliderCell 3-92

Index-10 OpenStep Development Tools—September 1996

NSTextField 3-81, 3-84
NSTextFieldCell 3-92
NSTitle 3-81
NSView 3-170
NSView Additions category

specification C-15
NSView class

implementing a subclass of 3-158–
3-161

NSView object
coordinate system 3-50
instantiation 3-160

NSWindow 3-69, 3-170

O
Obese Bits command in Icon Builder 5-20
objc_lookUpClass() function 8-20
objc_messageMatchedFilter() A-15, A-16
objc_messageSendDebug A-13
objc_msgSend() function 8-31
Object class 8-9, 8-10
object pointer A-2

dynamic type A-2
static type A-2

– object: (IBInspector) C-3
objects 8-2–8-3

aligning 3-47
arranging 3-45
automatic resizing of 3-98
compound 3-91
connecting 3-113
deleting from nib file 3-49
disconnecting 3-130
group attributes 3-86
grouping 3-55, 3-86
identifying 3-127
identifying with tags 3-107
layering 3-57
making columns and rows 3-48
making same size 3-52
matrix of 3-58
minimum size 3-54

moving 3-33, 3-43
multiple selection 3-34
placing 3-33
positioning 3-33, 3-40
removing 3-49
selecting multiple 3-34
setting titles 3-38
shrinking 3-54
sizing 3-39, 3-52, 3-54
tracing when debugging A-13
ungrouping 3-56

– objects: (IBDocuments) D-13
– ok: (IBInspector) C-3
– okButton: (IBInspector) C-4
Open command

in Interface Builder 3-7
in Project Builder 2-33

Open Folder command in Edit 4-25
Open in Workspace command in Project

Builder 2-34
Open Makefile command in Project

Builder 2-33
Open Selection command in Edit 4-25
– openEditorForObject: (IBDocuments)

D-14
openfile shell command 4-13
– openSubeditorForObject: (IBEditors)

D-21
– orderFront (IBEditors) D-21
– originalWindow (IBPalette) C-9
outlet 3-5, 3-109

adding to class 3-144
and outline mode 3-125
autotyping 3-166
connecting 3-114
naming 3-144
specifying 3-143

outline mode 3-12
and connections 3-124
disconnecting objects 3-131
identifying objects 3-127
making connections 3-120

overriding methods 8-11–8-12

Index-11

P
Page Layout command

in Edit 4-28
in Interface Builder 3-174

palette
Menus 3-28
objects 3-27
TextViews 3-30
using 3-27
Views 3-28
Windows 3-30

palette project in Project Builder 2-2
– paletteDocument (IBPalette) C-9
Palettes command 3-27
Palettes submenu in Interface Builder

3-27, 3-178
Palettes window in Interface Builder 3-4
panel

attributes 3-67
customizing 3-67
difference from window 3-70
sizing 3-36

– parentOfObject: (IBDocuments) D-14
Parse command in Interface Builder 3-163
Parse IDL command in Interface Builder

3-164
Paste and Link command in Edit 4-26
Paste command in Interface Builder 3-44,

3-49
Paste Ruler command in Edit 4-30
– pasteInSelection (IBEditors) D-21
– pasteType:fromPasteboard:parent:

(IBDocuments) D-14
path environment variable 1-6
– perform: method 8-36
– perform:with: method 8-36
– perform:with:with: method 8-36
Pipe command in Edit 4-22, 4-32
pixels inset 3-73
– placeView: (NSView Additions) C-17
placing objects 3-33

polymorphism 8-6
pop-up list 3-90

attributes 3-89
structure 3-94

positioning objects 3-33
precisely 3-40

postamble file 2-24
preamble file 2-24
Preferences command in Edit 4-3

C options 4-11
global options 4-6
text options 4-8
user options 4-4

Preferences command in Header Viewer
6-14

Print command in Interface Builder 3-62
printing 3-119
@private directive 8-29–8-31
project 2-1

building 2-18
converting earlier version 2-6
creating 2-3
debugging 2-32
directory 2-15
files, managing 2-14
makefile 1-4
opening 2-5
running 2-32

project attributes 2-8
application 2-9
bundle 2-11
palette 2-13
subproject 2-11

Project Builder application 3-2, 3-6, 3-7,
3-134, 3-155, 3-162

build targets 2-23
command reference 2-33
preferences, setting 2-29
project attributes, setting 2-8
project files, managing 2-14

Project menu in Project Builder 2-33

Index-12 OpenStep Development Tools—September 1996

project window in Project Builder 2-5
Attributes display 2-8
Builder display 2-18
Files display 2-14

@protected directive 8-29–8-31
@public directive 8-29–8-31
pull-down list 3-89, 3-90

Q
quitting test mode 3-136

R
radio button 3-71, 3-96
receiver of a message 8-5
reference object 3-41, 3-48, 3-52
Remove command in Project Builder 2-34
– removeConnector: (IBDocuments) D-14
removing objects 3-49
– replaceObject:withObject:

(IBConnectors) D-6, D-15
– resetObject: (IBEditors) D-22
– resignSelectionForEditor: (IBEditors)

D-15
resize bar 3-69
resizing

automatically 3-98
of objects 3-39, 3-40

resources 3-75
– respondsTo: method 8-38
retained window 3-69
– revert: (IBInspector) C-4
– revertButton: (IBInspector) C-5
Rich Text Format in Edit 4-8, 4-29
root class 3-137, 3-155
rows of objects 3-48
RTF See Rich Text Format in Edit
Run Application command in Project

Builder 2-34

S
Same Size command in Interface Builder

3-53, 3-177
Save All command in Edit 4-25
Save As command in Edit 4-25
Save command in Edit 4-25
Save To command in Edit 4-25
saving nib file 3-23
scroll view 3-81

structure 3-93
SEL data type 8-34
sel_getName() function 8-35
sel_getUid() function 8-35
Select All command in Interface Builder

3-34
Select in Workspace command in Project

Builder 2-34
selecting multiple objects 3-34
selection mode (matrix) 3-95
– selection: (IBSelectionOwners) D-23
– selectionCount (IBSelectionOwners)

D-24
– selectionOwner (IB) D-2
– selectObjects: (IBEditors) D-22
@selector() directive 8-34
selectors 8-7, 8-34–8-35
self 8-39–8-42, 8-43–8-45
Send To Back command in Interface

Builder 3-57
Set Grid Off command in Interface Builder

3-176
Set Grid On command in Interface Builder

3-176
Set Name command in Interface Builder

3-173
– setName:forObject: (IBDocuments)

D-15
– setSelectionFromEditor:

(IBDocuments) D-15

Index-13

setting breakpoints in Objective C
methods A-2

setting the font 3-84
setting titles of objects 3-38
Show Grid command in Interface Builder

3-46, 3-176
Show Links command in Edit 4-26
Show Markers command in Edit 4-30
Size display 3-36, 3-37, 3-40, 3-98
Size submenu in Interface Builder 3-177
Size to Fit command in Interface Builder

3-54, 3-55, 3-177
– sizeInspectorClassName (NSObject

Additions) C-13
sizing objects 3-39, 3-52, 3-53

precisely 3-40
sizing windows and panels 3-36
Sort command in Project Builder 2-34
sound files in Project Builder 2-16
sounds

adding to project 3-77, 3-80
associating with buttons 3-75
inspecting 3-80

Source command in Edit 4-33
– source (IBConnectors) D-6
Spelling command in Edit 4-26
static typing 8-13, 8-20
Structure menu in Edit 4-15
Subclass command in Interface Builder

3-141, 3-142
subclasses 8-9

creating 3-141
subclassing 3-141
subproject, project in Project Builder 2-2
super 8-39–8-43
superclass 8-9

selecting 3-141
switch button 3-71, 3-96

T
tabbing between fields 3-128
tags 3-107
tags file 4-23, 4-33
target 3-91, 3-111, 3-116, 8-37
target-action paradigm 8-36–8-37
Test Interface command in Interface

Builder 3-136, 3-172
test mode 3-101, 3-137
testing an interface 3-136
text

alignment 3-84
font of 3-84
initializing 3-38
setting attributes 3-84

Text command in Interface Builder 3-174
text field 3-81
Text menu in Edit 4-29
– textDidBeginEditing: (IBInspector) C-5
TextViews palette 3-30
titles 3-38
Tools menu in Interface Builder 3-177
top-level object 3-4
– touch: (IBInspector) C-5
– touch (IBDocuments) D-16

U
UI design 3-51
Undelete command in Edit 4-26
Ungroup command in Interface Builder

3-56, 3-175
UNIX

displaying manual pages in Edit 4-33
piping output into Edit 4-22
using a tags file in Edit 4-23
utility commands in Edit 4-31

Unnest command in Edit 4-29
Unparse command in Interface Builder

3-154
Update Directory command in Edit 4-34

Index-14 OpenStep Development Tools—September 1996

updating class definition 3-163
User Commands menu in Edit 4-22, 4-32
User Pipes menu in Edit 4-22, 4-32
using palette 3-27
using tags 3-107
Utilities menu in Edit 4-31

V
– validateEditing (IBEditors) D-22
Views palette 3-28

W
– wantsButtons (IBInspector) C-5
– wantsSelection (IBEditors) D-22
window

attributes 3-67
backing (buffer) 3-68
buffered 3-69
controls 3-69
coordinate system 3-50
customizing 3-67
difference from panel 3-70
nonretained 3-68
options 3-70
resize bar 3-36
retained 3-69
setting dimensions 3-36
sizing 3-36

– window (IBEditors) D-22
– window (IBInspector) C-5
Windows palette 3-30

